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Abstract. We study properties of evolution equations which are first order in time
and arbitrary order in space (FTNS). Following Gundlach and Martin-Garcia (2006)
we define strong and symmetric hyperbolicity for FTNS systems and examine the rela-
tionship between these definitions, and the analogous concepts for first order systems.
We demonstrate equivalence of the FTNS definition of strong hyperbolicity with the
existence of a strongly hyperbolic first order reduction. We also demonstrate equivalence
of the FTNS definition, up to N = 4, of symmetric hyperbolicity with the existence of a
symmetric hyperbolic first order reduction.
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1. Introduction

Systems of partial differential equations admitting wave-like solutions are ubiqui-
tous in both physics and applied mathematics. It is known that by restricting to
the special case with at most first order derivatives the initial value problem of
such systems can be classified algebraically with respect to its well-posedness. The
crucial step in this classification is to check for strong hyperbolicity by analyzing
the principal part, i.e. the derivative terms, of the evolution system [14,18].

The theory used to demonstrate this relies on pseudo-differential calculus [26].
By performing a pseudo-differential reduction to first order the basic method can
also be applied to evolution systems with higher order derivatives, see for exam-
ple [23,11].

For the initial boundary value problem the theory is not so complete. The sim-
plest approach for first order systems is to check for a stronger condition, called



2 D. Hilditch and R. Richter

symmetric hyperbolicity. With carefully chosen boundary conditions it can be used
to identify a well-posed initial boundary value problem [14,18]. If the evolution sys-
tem is not symmetric hyperbolic there is still hope to demonstrate well-posedness,
e.g. by employing the Laplace-Fourier method [17,2,22,25], which unfortunately
does not apply to arbitrary strongly hyperbolic evolution systems.

We study strong and symmetric hyperbolicity for a special class of higher order
evolution equations. Hyperbolicity of higher order systems was studied before in a
different context, see e.g. [3,27,7]. The equations of interest here are linear constant
coefficient, first order in time and arbitrary order in space (FTNS). They admit a
reduction to first order for which standard definitions of hyperbolicity are applicable.

Reductions to first order are obtained by introducing new variables for all but
the highest order derivatives [8], which is a common approach in numerical relativ-
ity [15,24,4,20]. In this way the known, first order definitions of hyperbolicity can
be applied, and powerful numerical methods are available in the construction of
approximate solutions [14,18,13].

However, making the first order reduction raises questions, e.g. about the num-
ber of constraints to impose and the size of the approximation error [19,6]. For
practical applications it also incurs a cost. The memory footprint of any numerical
approximation method increases hugely due to the auxiliary variables.

The question we address here is whether or not we can characterize hyperbolic-
ity of FTNS systems without making a differential or pseudo-differential reduction
to first order. The idea is to establish when “good” reductions of either type can
be made. For the important case of second order in space systems this question
was already answered satisfactorily in the affirmative by Gundlach and Martin-
Garcia [11], see also [10,9,12] for applications of of these ideas. The present work is
the extension of those calculations to first order in time, higher order in space sys-
tems. The generalization here will be useful in analyzing higher derivative systems.
A more abstract treatment of evolution systems can be found in [5].

We propose definitions of strong and symmetric hyperbolicity for FTNS systems
without reference to any first order system. This enables us to demonstrate equiv-
alence of FTNS strong hyperbolicity with the existence of an iterative first order
reduction, either differential or pseudo-differential, that is strongly hyperbolic in
the sense of first order systems.

We also find that if a higher order system has a symmetric hyperbolic first order
reduction then the equations must satisfy the FTNS definition of symmetric hyper-
bolicity. Conversely, for systems containing up to fourth order spatial derivatives,
we show that the new definition of symmetric hyperbolicity is also sufficient for the
existence of a symmetric hyperbolic first order reduction.

The first order reduction used in this case is a direct, not iterative method, i.e.
it differs from the one applied in the proofs concerning strong hyperbolicity. The
iterative, order-by-order reduction is not appropriate for symmetric hyperbolicity.
We give an explicit example of a third order symmetric hyperbolic evolution problem
without an appropriate second order symmetric hyperbolic reduction, but which
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does have a direct reduction to first order that is symmetric hyperbolic.

The Laplace-Fourier method, which can be used to prove well-posedness of initial
boundary value problems is not considered here. Higher order derivative evolution
systems can be treated by this technique (see for example [16]), because it once
again relies on pseudo-differential calculus.

The paper is structured as follows. In section 2 we review the definitions of strong
and symmetric hyperbolicity for first order in time, second order in space systems.
For pedagogical purposes, in section 3, we explicitly present the special case of the
extension of the theory to first order in time, third order in space systems. Then we
provide a general formulation of first order in time, N-th order in space systems in
section 4. In section 5 we discuss strong hyperbolicity using an iterative reduction
procedure. In section 6 definitions for symmetric hyperbolicity are given for the
higher order system without reduction. The relationship between the definitions is
then investigated using a direct reduction to first order. We conclude in section 7.
Appendix A-Appendix D contain various details that are relegated from the main
body of the text.

2. Basic notions of hyperbolicity

In this article we consider a special class of linear systems of partial differential
equations with constant coefficients. We are mainly interested in questions about
the well-posedness of initial (boundary) value problems.

Well-posedness: An initial (boundary) value problem is called well-posed if there
is a unique solution that depends continuously, in some appropriate norm, on the
choice of initial data.

Second order systems: The class of partial differential equations under consid-
eration is a generalization of the first order in time, second order in space systems
analyzed in [11,10,9]. We start with a short summary of that work. Consider first
order in time, second order in space systems of the form

45 = (A" )30,0,1+ (A",)05 + S @)

where we have absorbed all non-principal terms into the source functions S. They
have the form

Sy = ot + fu» (22&)
S, = abiii + ozl + asd + fo, (2.2b)

where f,, and f,, do not depend on % or v and the «; are constant coefficient matrices.
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Principal part: The principal part of the system (2.1) is
Oyt =~ (A", 0;1 + A%, 0, (2.3a)
D ~ (A,)9 0,050 + (AY,) 00 (2.3b)

where ~ denotes equality up to non-principal terms. We denote the matrix

- ()

the principal matriz of the system (2.1). For a fixed spatial vector s the principal
symbol of the system (2.1) is
s (Auu)isi A%,
(A%0)"sis5 (A%)"s;

s=(50) (26)

one obtains the principal symbol from the principal matrix by the contraction

Ps = S'A8,78S;s,. (2.7)

(2.5)

Note that with

Furthermore the equations of motion for the variables
0t
Ui = ¢ 2.8
w= (%) (28)

are up to non principal terms

Strong hyperbolicity: Following [11,25,10,9] the system (2.1) is called strongly
hyperbolic if there exist a constant My > 0 and a family of hermitian matrices
Hj(s) such that

Hy(s)P5 = (P5) Ha(s), (2.10a)
My T < Hy(s) < My 1, (2.10b)

where we used the standard inequality for hermitian matrices
A<B & otAv<o'Bu wo. (2.11)

It is a necessary and sufficient condition for well-posedness of the initial value prob-
lem. This definition is furthermore equivalent to the existence of a fully first order
reduction of (2.1) which satisfies the standard definition of strong hyperbolicity for
first order systems.

Note that this is not quite equivalent to the definition given in [11,10,9], where
it is required that the principal symbol has real eigenvalues and a complete set of
eigenvectors that depend continuously on s.
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What can be shown [25,18] is that (2.10) is equivalent to the existence of a
constant K» > 0 and a family of matrices T5(s) such that

Ta(s) ™' P Ta(s) = A(s), Ky < | Ta(s)] < Ko, (2.12)

with a real, diagonal matrix A(s) and the standard spectral norm || - ||.

In view of example 12 in [25], the continuity of T5(s) required in [11,10,9] is
sufficient to guarantee the existence of K5, but not necessary. Fortunately despite
the continuity condition being slightly too restrictive, the construction of first or-
der reductions with the approach of [11] is unaltered if we instead require (2.12).
Our treatment of strong hyperbolicity for FTNS systems is therefore the natural
generalization of [11].

Symmetric hyperbolicity: For the analysis of the initial boundary value prob-
lem the stronger notion of symmetric hyperbolicity is desirable. It guarantees the
existence of a conserved energy in the principal part and allows the construction of
boundary conditions such that the initial boundary value problem is well posed. A
Hermitian matrix

B Hij Hi
HY = | 41712 2.13
2 <HI% I{22 ’ ( )
independent of s?, such that the matrix
S;HY AL *s,Sy, (2.14)

is Hermitian for every spatial vector s’ is called a candidate symmetrizer. The sys-
tem (2.1) is called symmetric hyperbolic if there exists a positive definite candidate
symmetrizer. The aforementioned conserved energy is

E= /de = /d3x al H a;. (2.15)

It can be shown that 9, F ~ 0 if (2.14) is Hermitian [11].

3. Third order systems

Before starting with the generalization to arbitrary order we discuss third order sys-
tems here. In [11] Gundlach and Martin-Garcia give different possible definitions of
hyperbolicity of second order systems. They showed that these definitions are equiv-
alent to the existence of a first order reduction with the same level of hyperbolicity.
We follow a similar approach here.
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3.1. Definition of third order systems
FT3S systems: We consider first order in time, third order in space (FT3S) sys-
tems of the form
O = (A" 0u 4 (A%)v + (B 1)u + s*, (3.1)
Opv = (A”u)ijaiﬁju + (A7)0 + (A%)w + (BY14) 05u + (BY2,)u + (BY1,)v + 59,
Ow = (AY,)9%0,0,01u + (A,) 9 9;0;0 + (A%) 0w + (B 1) 7 0;0;u + (B%24,) Oiu
—+ (ngu)u + (Bwh))iaﬂ) + (BwaU)U + (Bwlw)'w + Sw,
where s%, s and s" are arbitrary source terms that do not depend on u, v or w.
In analogy to the second order case we define the principal part of that system as
Opu =~ (Auu)lazu + (Auv)vv (32)
atv =~ (Avu)ijaiaju + (Avv)iaiv + (Avw)wv
Oyw ~ (Awu)ijkﬁiajaku + (A" )7 0;0;v + (A™,,) 0w,

where as before ~ denotes equality up to non principal terms. As the principal
matrix of the system (3.1) we define

R (AR B (A%) 0
B™ = SP(Av, ) §P(AY,)™ §P(AY,) (3.3)
(Awu)pmn (va)pm (Aww)p

and the principal symbol is

P§ = S AL M Ssy (3.4)
where
S5iSj 00
Sij = 0 S; 0 . (35)
0 01

3.2. Reduction to second order

Reduction variables: We are going to define strong hyperbolicity of FT3S sys-
tems by referring to strong hyperbolicity of second order systems. Here we define
what we mean by a reduction of the FT3S system (3.1) to second order. We intro-
duce a vector of reduction variables d,. The reduction variables eventually replace
the spatial derivatives of the fields v in the reduced system:

dy = Du. (3.6)

We use lower case letters from the beginning of the Latin alphabet as derivative
indices without further meaning. In what follows their use simply helps to identify
indices which belong to d which makes it simpler to work with the principal matrix
of the second order reduction.
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Unmodified evolution equations: The aim is now to include the d, as inde-
pendent variables in a first order in time second order in space (FT2S) system.
Therefore an evolution equation for these variables is needed which must be consis-
tent with (3.6). One gets this equation e.g. by taking the spatial derivative of the
evolution equation for u:

Ody = (A" 0adj + (A")00v + (B"14)0at + 045" (3.7)

In this equation J,s* does not depend on the variables u, v, w or d, and hence can
be considered as a given source function.

Auxiliary constraints: Obviously the system composed of (3.1) and (3.7) is not
second order. However, one can get rid of the higher order terms by adding linear
combinations of the following functions and their derivatives to the right hand sides

1
Cq 1= 8au - daa Ciq ‘= 5 (aida - 8adi) )
Cija = 6,»8jda — 8(i8jda). (3.8)

These functions vanish when equation (3.6) is satisfied. We will show that their evo-
lution system is closed for the FT2S systems that we consider here. The functions ¢
are denoted auwiliary constraints. Furthermore the c;;, can be written as a linear
combination of derivatives of the ¢;,:

Cija = 2/3ai0ja + 2/38]‘01'@. (39)

Therefore their addition to the right hand sides is already covered by the addition
of derivatives of the c;,. We do not consider the c¢;j, separately.

Reduced system: FT2S systems which are obtained in that way have the form
O = (A% Ou + (A%)v + (B )u 4 5% + (D) %¢q + (D) ¢
Ordq = (B"14) 0t + (A%) 00dy + (A™,)00v + 0as + (D) ocy + (D)o,
v = (B 1) 0iu 4 (AY)"0idg + (AY,) 00 4 (AY w)w + (B2 )u + (B 1,)v + s°
+(D?)%cq + (DY) Cia,
Oyw = (B“’lu)”aiaju + (AY)Y%0;05da + (AY4)"Y 0;0;v + (A% )" 0w + (B 24,)" O5u
+ (BY30)u + (B%14,)'0;v 4 (B%2,)v 4 (BY 1)w + (DY)},
+ (D) 9p.c)4. (3.10)
We denote the constant matrices D and D the reduction parameters. Since Cjp 18
antisymmetric we can assume without loss of generality

(D*)'* = —(D")™, D" = —D,, (3.11a)
(Dv)ia — 7(Dv)ai’ (Dw)k]a _ 7(Dw)kaj' (311b)
Definition 1. We call a first order in time, second order in space system of the

form (3.10) an FT2S reduction of the first order in time, third order in space
system (3.1).
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This definition of a reduction to second order is quite restrictive, one may think
of other definitions that are satisfied by more second order systems. Indeed one
finds that it is too restrictive to be used in a definition of symmetric hyperbolicity
for FT3S systems. This topic is discussed in Appendix C.

Auxiliary constraint evolution: For every FT2S reduction of (3.1), provided
that the reduction constraints are satisfied, one can show that there is a relationship
between solutions of the two systems.

Lemma 1. If the system (3.10) is an FT2S reduction of (3.1) and (u,d,,v,w) is
a solution of (3.10) with vanishing auxiliary constraints (3.8) then (u,v,w) is a
solution of the FT3S system (3.1). Moreover, if (u,v,w) is a solution of the FT3S
system (3.1) and the system (3.10) is an FT2S reduction of (3.1) then (u, Oyu, v, w)
is a solution of the FT2S system (3.10) with vanishing auziliary constraints (3.8).

Proof. By inserting the subset (u,v,w) of the FT2S solution into the FT3S sys-
tem one can easily check that these functions satisfy (3.1), because the auxiliary
constraints (3.8) vanish by assumption. Moreover, if (u,v,w) is a solution of (3.1)
then one can insert (u,0,u,v,w) into the system (3.10) to see that it is a solution.

The reason for this being that the auxiliary constraint evolution system is closed:

Oicq = Ordy — 0,01u
= (A")) 0ach + ((D)o” — (D™)?0) ey + ((D)o™ — (D*)**9,) ckp, (3.12a)
OiCiq = 0;0¢dq — 0,0:d;
= (D), 0icp + (D)o dicky — (D)i*acy — (D)™ duc,
OtCija = 2/30;0:Ciq + 2/3040:¢5. (3.12Db)
It is straightforward to check that (u, 0qu, v, w) solves (3.8). O

Principal part of the FT2S reduction: According to the definitions given in
section 2 the principal part of the FT2S reduction (3.10) is

O = (A",)'0pu + (D*)*Dgu + (D) Dida,

Ohdy =~ (B"14)0au + (D)o 0pu + (A",) 0udp + (D)o Ordy, + (A“,)uv,
v =~ (B*14) 0iu + (DY) “0qu + (A”,) " 0idy + (DY) *0;dy + (AY,) 00 + (A% w
Ow =~ (B"1,)90;0;u + (D¥)**0,0,u + (A" ,)7°9;0;d, + (D¥)*30,,0;d,
+ (A",)79;0;0 + (AV4) 0w (3.13)

and the principal matrix is

5? ((Au ]_,’_ Du ]) 6P(Du)jb 0 0

o7 (B )57 +( ) 7) op ((A* )55] + (_D) ) (A%)o78] 0

57 ((B'1)’ + (D)) Z(A” + (D)) 67(A%)T OF(A%w)

(Bwlu)”]+(D“’)”j (AW )PP (DW)PIe (AW,)PT (Ay)P
(3.14)

j b
Agija =
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3.3. Strong hyperbolicity

Definitions of strong hyperbolicity: We show that the following definitions of
third order strong hyperbolicity are equivalent

Definition 2a. The FT3S system (3.1) is called FT2S strongly hyperbolic if there
exists an FT2S reduction (3.10) which is strongly hyperbolic in the sense described
in section 2.

Definition 2b. The FT3S system (3.1) is called FT3S strongly hyperbolic if there
exist a constant Mz > 0 and a family of hermitian matrices Hs(s) such that

Hs(s)P§ = (P5)" H(s), Mz "I < Hy(s) < Ms 1, (3.15)
where the matriz inequality is understood in the standard sense (2.11).

With this one can apply an iterative procedure which reduces strong hyper-
bolicity of FT3S systems to strong hyperbolicity of fully first order systems. First
one reduces the FT3S system to second order and after that the resulting FT2S
system to a fully first order system by applying the work of Gundlach and Martin-
Garcfa [11], FT3S — FT2S — FTIS.

A third possible definition of strong hyperbolicity employs a pseudo-differential
reduction. One finds that this definition is very similar to our definition 2b. We
discuss the topic in Appendix A for systems or arbitrary order.

FT2S strong hyperbolicity = FT3S strong hyperbolicity: In the proof that
definition 2a implies 2b we start with a 241 decomposition of the reduction variable
dg. With the orthogonal projector, q(‘:‘, of the given vector s we decompose d, =
qPdp + s.ds, where dps® = 0. Partitioning the state vector as (u,da,ds, v, w) the
FT2S principal symbol Ps 4% is

X80
P5 P = < YAB Péq) ) (3.16)
where
X,AB _ (((AUM)J —|—_(Du)j) s g_u>jb8jq§ > (3.17)
(D)a?q%s; (D)a?’q% 5547
and

] (B"1) + (D)as%s;  ((A")" + (D)a’"s"s;) ¢
Y8 = ((B*1u)? + (DV)7) 5; ((A%0)7" + (D¥)7°) 5547 . (3.18)
(B1)" + (D)) sps; ((A¥u)P + (D)) sps;qy’

There we used that the D are antisymmetric in the last two indices. That is, if one
contracts both indices with s then the result vanishes.
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The assumption that (3.1) is FT2S strongly hyperbolic means that there exist
a constant My and a family of matrices Ho(s)*? such that

Hy(s)ABPs ¢ = (P5p™)THy(s)PC, (3.19a)
M IAB < Hy(s)AB < My 145, (3.19b)

where T48 is the appropriate identity matrix.
We decompose Hz(s)*? in a way compatible to the decomposition in (3.16):

H11 S AB H12 S A
Hals)" = (HHES;TB sz((«z) ) ’ (3:20)

and find

ABy _C Ay C A ps
Ha(s)ABPs € — Hyi(s) BX~B C+ Hia(s) ~YC Hya(s)" Py . (3.21)
Hiz(s)T BXpC + Hop(s)YC  Hayo(s)Ps

Looking at the lower right block of this expression equation (3.19a) implies
Hao(s)P§ = (P§) Has(s). (3.22)
Furthermore we have obviously Has(s) = Has(s) and
M2_1UTU < UTHQQ(S)U = (O,UT) Hg(s)AB (0,114f)Jr < Myv'v Vo, (3.23)

because (3.19b) is satisfied by assumption.
Hence, the matrix Hs(s) := Hao(s) satisfies (3.15) and FT3S strong hyperbol-
icity of (3.1) is shown.

FT3S strong hyperbolicity = FT2S strong hyperbolicity: For the reverse
direction we need to choose the reduction parameters appropriately. One can check
easily that the first row and column of (3.16) vanish with the choice
(D) = —(A"), (D)o’ = =(B 1), (D") =—(B"1.)', (3.24a)
(DY) = —(B“ )P, (D" =o0. (3.24b)
We call (3.24) the partial choice of reduction parameters. Under the partial
choice P§ 4P has the following lower block triangular form,

00 0
PsaP=(0Xx% 0 |, (3.25)
0YB P
where

X5 = (D) ¢4siq, (3.26a)

(A" + (D)aTss;) g
Y8 = ((Av,) +(_D) )sjqb : (3.26b)

((A“)P" + (D)) sps a4



Hyperbolicity of high order systems 11

As mentioned in section 2, definition 2a is equivalent to the existance of a con-
stant K, and a family of matrices T5(s) 42 with

Ky < | Ta(s)a”|| < Ky (3.27)

such that T (s) "' 4B Ps g¢ Ta(s)c P is real and diagonal. Here we show this property
instead of the original definition.

Following [11] we choose the reduction parameters such that X% is diagonaliz-
able:

(D)7 = ide,? (3.28)

with A € R and &,7° the Levi-Civita symbol. The eigenvalues of X% become +.
They are independent of s and the eigenvalues of P54 ” are the union of the eigen-
values of P§ and £A.

Using that P35 is bounded, because it is a sum of products of bounded matrices:

1P5 1 = 115 AP35 Suaspll < 1181l 114755 | 1Swal lsl, (3.29)

we choose A larger than all eigenvalues of Py. Together with the assumption that
(3.1) is FT3S strongly hyperbolic, i.e. that P; is diagonalizable, this choice of A
makes P§ 42 diagonalizable as well.

The corresponding similarity transformation can be constructed from the eigen-
vectors of P§42. One finds that given an eigenvector, v, of P§ with eigenvalue o
and an eigenvector, wg, of X f then

0 0
rar(0)=e() e ()= ()

where we used w := (A — P§)"'YBwp, which exists, because A does not coincide
with an eigenvalue of Ps.
Now, a matrix which makes T (s) "' 4B Ps Ty (s)c” diagonal (and real) is
WaP 0 >

T2(S)AB = ((}\ _ P;)_IYAWAB TB(S) (330)

where T3(s) and W4 P diagonalize P§ and X 4P respectively. The inverse of Ty (s) 4”
is
W_lAB 0
To(s)taP = .
2074 = (L v

Both, T(s)4? and its inverse are bounded, because on the one hand T3(s) and
Ts(s)~! are bounded by the assumption (3.15) and we have chosen \ such that
(A — P§)~! is bounded as well.

Hence, we get that there exists a constant Ky > 0 such that

Ky' < | Ta(s)a”|| < Ko, (3.31)

which shows that FT3S strong hyperbolicity implies FT2S strong hyperbolicity.[]
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3.4. Why two different reductions?

Failure of the iterative procedure for symmetric hyperbolicity: Symmet-
ric hyperbolicity relies fundamentally on conserved quantities (we will discuss the
details of FT3S conservation equations in section 3.6). Hence, in order to deal with
symmetric hyperbolicity for the second order reductions, which were used to handle
strong hyperbolicity, we need to construct a reduction with a conserved quantity
that is associated to the given FT3S symmetrizer. However, one finds that there are
FT3S systems with a conserved energy for which no FT2S reduction with the same
conserved quantity exists. We give such a counterexample in C.2 and the reason
why an FT3S conserved quantity does not allow the construction of a conserved
quantity for an FT2S reduction is discussed in Appendix C.

Discussion: This situation differs from the case of reductions of FT2S systems
to first order. There every FT2S symmetrizer implies an FT1S conserved energy.
In [11] this was the basis of the proof that for every symmetric hyperbolic FT2S
system there exists a symmetric hyperbolic first order reduction. Thus, we cannot
use the iterative procedure to prove existence of symmetric hyperbolic lower order
reductions. In order to avoid this problem we employ a direct reduction to first
order (described in section 3.5) and construct a conserved quantity for the first
order system.

Why not always use the direct reduction? Conversely, one may also think of
using the direct first order reduction to show statements about strong hyperbolic-
ity. There the problem is that the proofs rely on the choice of reduction parame-
ters (3.28). For direct first order reductions the structure of reduction parameters
changes completely, and we did not find a choice that shows existence of a strongly
hyperbolic direct first order reduction. So we use one class of reductions for proofs
about strong hyperbolicity, namely reductions from FT3S to FT2S, and another
class for proofs on symmetric hyperbolicity, namely reductions from FT3S to FT18S.

3.5. Direct reduction to first order

Reduction variables: In analogy to the construction of FT2S reductions of the
FT3S system (3.1) we now define direct first order reductions of (3.1). We also use
the terminology direct FT1S reduction. We define reduction variables

d¥ = O, di; = 0udsjy, d; = Ov. (3.32)

The equations of motion which one derives from these definitions are
ody = (A“,) 0;0;u + (A™,)0;v + (B%14)05u + 0;8", (3.33a)
Opdil; = (A“)50,0;0Ku + (A%,)0:0;v + (B"1,)0;0;u + 9;0;5", (3.33b)

8tdf = (A”u)jka,ajﬁku + (A”U)jﬁiajv + (A”w)ﬁiw + (B”lu)j&;()ju + (szu)a,;u
+ (B“h,)&»v + 0;8". (333C)
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Auxiliary constraints: They are subject to the first order auxiliary constraints

C? _ alu _ d?, E?j — ald; — a(ld;), C;Lj = 8(1d;‘) —d¥

179

Ciip = 0idjy — a(id;k), ¢; = 0;v—dj, ¢ = 0idj — a(id}’). (3.34)

We call a first order system which is composed of equations (3.1) and (3.33) with
additions of linear combinations of the auxiliary constraints (3.34) and their deriva-
tives to the right hand sides a direct first order reduction of the FT3S system (3.1).

Reduction: Note that we allow additions of derivatives of the auxiliary constraints,
but it is not possible to add arbitrary derivatives, because the final system must
be first order. The constraint additions are used to cancel the higher order terms
in (3.1) and (3.33).

As in section 3.2 one can show that there is a one-to-one relation between solu-
tions of (3.1) and the solutions of first order reductions which satisfy the auxiliary
constraints. The reason is again that the auxiliary constraint evolution system in
the first order reduction is closed. We show this step for arbitrary spatial derivative
order in section 6.1 and Appendix D.

The principal part of a first order reduction of (3.1) has the form

Oru ~ (D“u)kc}i + (Duu>klczl + (D“v)kc}é + (Duu)klézl + (Duu)klmézlm
+ (D",)key,, (3.35a)
O = (D*)heff + (D")iH ey + (D)5l + (D) + (D)
+(D*)i"ey, (3.35b)
O == (D" ¥t + (DVu) ety + (D7) ey + (D )Meiy + (D)
+ (D), (3.35¢)
Ordfy = (A")*0ds), + (A“)0udY) + (D) el + (D)™ ey + (D)5 e}
+ (D)™ e + (D*0)i e, + (D)™ ep, (3.35d)
Ody ~ (A°,)*0udSy, + (AY) 0idy + (A°w) 0w + (DV)i et + (DY) ey
+ (D)% e + (DY) e + (DY )i ™ + (DY) e, (3.35¢)
Oyw = (A") TR0l + (A, 0idY + (AV ) Oiw + (D) e + (D u)M et
+ (Dwv)kcz + (Dwu)klézl + (Dwu)klmézlm + (Dwv)klEZla (3-35f)

where the constant matrices (DXy) and (D¥Xy) (X,Y = u,v,w) are the reduction
parameters.

Since the reduction parameters are contracted with auxiliary constraints and the
symmetric part of the ¢ vanishes we assume without loss of generality that the D
symmetrized in the upper indices vanish:

(DXy)0) =0, (DX y)(kim) — g, (DXy ), — 0,

(DXy ) ktm) = ¢, (DXy);*D =0, (DX y);; k) = 0. (3.36)
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Moreover, since d; = d?ij) the reduction variables satisfy

(Duu)kl (Duu)(kl) (Duu)kl _ (l)uu)i(kl)7 (Dvu)kl (Dvu)(kl)7
(Dvu)zkl — (Dvu)z(kl)y (Dw )kl (Dwu)(kl)’ (Duu)klm (Duu)k(lm)’
(Duu)lklm _ (Duu)zk(lm)’ (Du )klm (Dvu)k(lm)’ (Duu)iklm — (‘Duu)lk(lm)7
(Dwu)klm (Dwu)k(lm) (Duu)”klm — ([)uu)(z_)k(lm)7 (Duu)ijk — (Duu)(ij)kla
(Duu)ijkl — (Duu)(ij)(kl)a (Duu)uk — (Duu)(ij)k;
(D")ii" = (D))" (3.37)
In a representation with the state vector
(u,d?,v,d;‘j,df,w) (3.38)
the principal matrix of the system (3.35) is
AD M = (3.39)
(D*)P (DUu)P*F (D¥,)P (D")PH (D"y)P" 0
(Duu)zp (Duu)ipk (Duv>ip (Duu)ipkl (Duv)ipk 0
(D" (D) (D7) (D7) (D", 0
(D¥,)i;* (D"y)iP% (D¥,)i? (A“u)(kfszfsf) + (D%,)i;P Auv(sg(;;c) + (D¥,),7* 0

(
Dvu)ipk (va)ip (Avu)kl(SP + (Dvu)ipkl (Avv)ké"]; + (va)ipk (Avw>§17
( (D

( i
(Dwu P (Dwu pk (Dwv)p (Awu)pkl + wu)pkl (va)pk 4
)

where (DXy).* := (DXy).* + (DXy).*.

3.6. Symmetric hyperbolicity

Definitions of symmetric hyperbolicity: Now we show that the following def-
initions of third order symmetric hyperbolicity are equivalent

Definition 3a. The FT3S system (3.1) is called first order symmetric hyperbolic
if there exists a first order reduction which is symmetric hyperbolic in the usual
first order sense [1]]. That is, there exists a choice of reduction parameters and
a Hermitian matrix Hfj k= Hl(ij) ®D which is positive definite in the space of
symmetric tensors such that

Hij klAfklmn (3.40)
is Hermitian for all p.
The matrix H7 " is symmetric in (i, ) and (k, 1), because we defined the reduc-

tion variable d}; symmetric.

Definition 3b. The FT3S system (3.1) is called FT3S symmetric hyperbolic if
there exists a Hermitian matriz Hy H— HPE”) ) which, is positive definite in the

space of symmetric tensors such that

Sy HIF AL ™ 5,8 m (3.41)
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is Hermitian for every spatial vector s.

As before we denote a positive definite Hermitian matrix Héj M= Héij ) (kD)
which makes (3.41) Hermitian a symmetrizer. If HY * makes (3.41) Hermitian, but
is not necessarily positive definite then we call it a candidate symmetrizer. It is
straightforward to check that given an FT3S symmetrizer Héj ' the energy

E= /d31‘6 = /d?’z qung kluij (3.42)
is conserved up to non principal terms, i.e. 9;E ~ 0.

Def. 3a = Def. 3b: Given an FT3S system which satisfies definition 3a there
exist, according to the usual definition of symmetric hyperbolicity for first order
systems [14], reduction parameters, D and D, and a matrix H{j k= H{ij ) *D uch
that the product H kl.A’f )™ is Hermitian for every p. Moreover the matrix H}/ H
is positive definite in the space of symmetric tensors.
Using the state vector (3.38) both HZ* and A?4,™" are decomposed into 6 x 6
blocks. By grouping the variables as
(w,df,v | d,dY,w) (3.43)

s Uiy igr Y

we identify four 3 x 3 sub matrices in H; and A}, where H; has the form

. Hik Hz kl
ij kl 11 12
= g i) .

We are now interested in the lower right 3 x 3 sub matrix of the product of H;
and AY. It turns out that this sub matrix contains the FT3S conservation equation,
i.e. the condition that (3.41) is Hermitian.

The lower right block of the product H* AP,,mn i

(Duu)pmn (Duv)pm 0
=P [ (De)rmm (D)™ 0 (3.45)
(Dvu)pmn (va)pm 0
o [T + (D A (D 0
+ Héﬂz (Avu)mn(giz + (?vu)kpmn (Avv>m6:;€7 + ([_)vv)kpm (Avw)(;z
(Awu)pmn 4 (Dwu)pmn (va)pm 4 (Dwv>pm (Aww)p

By assumption this matrix is Hermitian, because it is a quadratic subblock on the
diagonal of the Hermitian matrix H}’ kl.A’l’ [

Furthermore, when we contract the index p in (3.45) with an arbitrary spa-
tial vector s, and the full matrix from the left and right with S;; and Sy, =
diag(smsn, Sm, 1) respectively then the result is still Hermitian, because S;; and
Simn are Hermitian.

Using the fact that the symmetrization of the reduction parameters D in all
upper indices vanishes according to (3.36) it follows that all terms in (3.45) that
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contain reduction parameters vanish after the contractions with s,, S;; and Sy,s,.
The remaining terms are

(A ke, oy s sy 0 ’
SHB™ | (Av,)mns? T (AY,) ™8P (A7)0 | $pSmn = Si Hb ™ A" 5, S -
(Awu>pmn (va)pm (Aww)p
It is clear that H;gkl = HZ(;] ) (kl), and since it is a principal minor of the positive
definite H*" it is positive definite as well. With the identification
HM = g (3.46)

this shows that the FT3S system is symmetric hyperbolic in the sense of definition
3b.

Def. 3b = Def. 3a: Given a matrix H./ M ?Eij) ) which satisfies (3.41) we
now construct a symmetric hyperbolic first order reduction of (3.1). At first it is
convenient to make a partial choice of the reduction parameters such that the first
three rows and columns of (3.39) vanish. This is achieved by choosing all reduction
parameters DXy = 0 (X,Y = u,v,w) and in addition

(D )P* =0, (D“.)"* =0, (D¥,)P* =0, (D“,)** =0,

(Dvu>ipk =0, (D’wu)pk =0, (Duu)pkl =0, (Duu)ipkl =0,

(Dvu)pkl = 07 (Duv)pk = 07 (Duv)ipk = Oa (va)pk == O (347)

The next step is to make the ansatz

100 0
. Ik 0~*%0 0
ijkl __ Y _ 0

00 0HIM

where the 2x2 decomposition here is to be understood in the same sense as in (3.44).
Obviously this matrix is positive definite when H2’ " is. Hence, what needs to be
shown with this ansatz is that the remaining reduction parameters can be chosen
such that (3.40) is Hermitian for all p.

We define
D (D) 0
Jpiimn . _ H;J kl (Qvu)kpmn (vi)kpm 0 (3.49)
(Dwu)pmn (Dwv pm. ()
and

Tpijnm — H;;jklAgklmn~ (350)

Since the form of Azfij’” and Hfj M has been simplified by taking the partial
choice (3.47) and the ansatz (3.48) respectively we only need to show that there
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exist reduction parameters such that the matrix
Jrimn g ppijnm (3.51)

is Hermitian for all p. In this equation TP% ™™ is fixed because we assume an FT3S
system with given symmetrizer.
The condition that Hy’ M is a candidate symmetrizer is equivalent to

plpijnm) _ pt(pig nm)7 (3.52)
because for all tensors XP %k the equivalence
XPUK) =0 & s,s8,XP M sps =0 Vs (3.53)

holds.
Now we need to find an appropriate JP% ™™, In order to be able to solve (3.49)
for the reduction parameters it needs to satisfy certain symmetries:

0l _ g Jriikl _ v (i) (kD). (3.54)

Note that J®I% k) = ( implies that the last column of J?% k! vanishes.
One can prove the existence of a JP% *! which satisfies (3.54) and makes (3.51)
Hermitian by construction. With the definition

Vpijkl = Tpij kl _TTpklij (355)
the condition that (3.51) is Hermitian becomes
JPiikl _ pipklij _ _ypijkl (3.56)
In appendix Appendix B we show that using the ansatz

ikl _ Z z, V@) T (@) 7 (k)7 (L) (3.57)
TESs

the system (3.54),(3.56) becomes a linear system on the z,, which can be solved if
Vpiikl) — .

The latter condition is satisfied by assumption. Hence, multiplication of the
resulting JP ¥ ¥ from the left by Hj ! (which exists, because Hj is positive definite)
shows that there exists a first order reduction which is symmetric hyperbolic and
has the symmetrizer (3.48). O

4. Higher order systems

In the following sections we extend the notions of strong and symmetric hyperbol-
icity to a certain type of higher order in space systems. As Gundlach and Martin-
Garcfa in [11] we do not consider the most general first order in time, Nth order
in space system, but rather the subset for which a first order reduction exists. Here
we describe these systems and establish our notation.
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4.1. FTNS systems

Notation: We start by describing the notation that we use to present FTNS sys-
tems efficiently. The equations of motion will be given for fields v*, where v* denotes
a vector of fields which can appear at most NV — p times differentiated in the FTNS
system. For reasons that will become clear later we also denote fields with that
property variables with p implicit derivatives. To denote derivatives acting on v
we define for py =0,...,.N -1, v=0,...,pand p=1,..., u — v operators

A o (AR \ilelp—vt1 9,
A v (A V) povt 811»--1“—1/4-1’

Ble/ = (Bupy)“mz“ﬂjiﬁlail

(4.1a)
(4.1b)

celp—y—pt1)

with constant matrices (A*, )% tu-v+1 and (B*,,)% iu-v=r+1_ Since the number
of “derivative indices” (the indices denoted by lower case Latin letters) in these
matrices is fixed through p, v and p we also use the abbreviations

(AF)E = (AR, )i iumv (4.2a)
(A#y)il»--ioi — (A#V)h---iajl---ju—u—a+1, (4.2b)
(Auy)il...idg‘ = (Auy)il"'i0i0+1"'iH*V+1, (42C)

i.e. an underlined lower case Latin letter means “fill in an appropriate number of
derivative indices”. Analog notations are used for the other objects that appear
here. The fields v* may also appear undifferentiated, i.e. in the form A*, 0" ™! or
B*(,i—y41),v". For efficiency we use the same notation in that case:

AMH+1’0M+1 = AHH+1UH+1 = (AMH+1)£(C)£’UM+17 (43&)
BM(/L—I)+1) l,'UV = BM(/L—I)+1) V'I)V =: (BM(’U‘_V_;’_l)V)lai'UV. (43b)

Evolution equations: We define an FTNS system as a system of equations of
the form

pt1 no p—v+l
RN VES S SR PR (a0
v=0 v=0 p=1
N-1 N-1N—v
o= ANTL e+ YT BN e sV (4.4D)
v=0 v=0 p=1
with 4 =0,..., N — 2 and source terms s*, s¥ =1 (the source terms do not contain

the v#). Note that FT2S systems are the first order in time, second order in space
systems treated in [11] and FT1S systems are fully first order systems. If we consider
the equation of motion for v* in (4.4) then the left hand side, d;v*, is a first order
derivative and in the right hand side the highest derivative acting on v¥ has order
@ — v+ 1. If we consider v* as a variable which contains p derivatives implicitly
then the counting of derivatives gives at both sides p + 1. Therefore it is helpful to
think of the v* in that way, which explains our terminology.
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Principal part: We will see that one can define strong and symmetric hyper-
bolicity of FTNS systems through the coeflicients of the highest order derivatives
in (4.4). Therefore we call
p+1 N-1
Oyt ~ Z A vY, AN ~ Z AN oY, (4.5)
v=0 v=0

with p = 0,..., N — 2 the principal part of the FTNS system. Furthermore we
denote the matrix

At = (AR ) T (4.6)
‘ wel(Dk p=0,...N—1’
with () meaning symmetrization and
Y (AR )L forv < p+1

AR )= 4.7

( ) { 0 forv>p+1, (47a)
ARG /AL
‘ foru <N-2v<pu

(AN )G = 621 oN et forp < N—-2v=p+1 (4.7b)

6,?15%1[: foruy=N-1v<N-1
0 forv>p+1

for p,v < N — 1 the principal matriz of the FTNS system. In the variables u;, =
(O -+ Oin_,_, V") p=0,...,n—1 the principal part of the FT NS system can be written
as

6tui ~ ANpilapul. (48)

Principal symbol: The principal symbol of the FTNS system (4.4) is
Py = SNTANP L5, SY, (4.9)
where

SJN =diag(sj, - - Sjn_1>5j1 -+ Sjn_ss- 1551, 1) (4.10)

5. Higher order strong hyperbolicity

In this section we consider strong hyperbolicity of FTNS systems. In analogy to
the case of FT3S systems we introduce an iterative reduction procedure, FTNS —
FT(N —1)S — ... — FTI1S and use this to define strong hyperbolicity for FTNS
systems without referring to the reduction.

5.1. Reduction to order (N — 1)

Reduction variables and auxiliary constraints: We begin with the description
of reductions to order (N — 1). The starting point is the FTNS system (4.4).
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Using the same procedure that was described in detail for FT3S systems in
section 3.2 we construct FT(N — 1)S reductions of (4.4). We define the reduction
variables

d; = 00" (5.1)
and derive from (4.4a) their equation of motion:
dyd; = (A%)9;0,0° + A° 19,0 + BYo9;0° + 8;5°. (5.2)
The auxiliary constraints introduced with the new reduction variable are
¢ = 070 — d;, 5.3a)
Ciy.oig = Oiy -+ Oi,_ di, — Oy - 0,1 d; . (5.3b)

One can show that for ¢ > 2 the constraints ¢;, ;. can be written as linear combi-
nations of derivatives of the ¢;;. The proof can be done through induction with the
induction step

o—1
1
Ciy.iig — ; Nz::l az'ucil.i.ip,lip,g...ia + m VZ: 8i1 s ai,,716iu+1 s 8io-ciuio"
(5.4)

FT(N — 1)S reduction: In analogy to section 3.2 we come to FT(N — 1)S re-
ductions by adding the constraints ¢; and ¢;; as well as their derivatives to (4.4)
and (5.2). If we restrict to those constraint additions which appear in the resulting
FT(N — 1)S principal part then we get the following class of FT(N — 1)S systems

8tv0 = (Aoo)kakvo + (Aol)vl + (Bolo)’UO + s° + (Do)kck + (Do)kjckj, (5.5&)
&gdi = (Aoo)'jaidj + Aol&-vl + Boloai’vo + 82-80 + (D)ikck + (D)ikjckj, (55]3)

pt1 wo p—rv+l
ki...k, ) ».
Oyt = (A#O) 1 ‘+18k1 - 8kudku+1 + Z A oY + Z Z B“p,ﬂ}” + sH
v=1 v=0 p=1

+ (D”)’“"'kﬂﬁkl .. 8}6}"_10]@“ + (D“)’“"'k““akl . ak“’_lck“’k}&l, (55(‘,)
N-1

at,UN—l _ (AN—lo)kl...k:Nakl . 6kN,1de + SN—l + Z AN—IVUV
v=1
N—-1N-—v
+ Z Z BN_lﬂVUV + (DN_l)klmkNilakl e akN—QCkN_U
v=0 p=1
+ (DN_l)kl'”kNakl ...akN72CkN71kN (55d)

where . = 1,..., N — 2 and the matrices denoted D and D are the reduction pa-
rameters. Due to the antisymmetry of ¢;; one can assume without loss of generality
that the D are antisymmetric in the last two indices. By applying this reduction
procedure (N — 1) times we finally arrive at an FT1S system.
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Auxiliary constraint evolution: By construction it is clear that there is a one-to-
one correspondence between the solutions of (4.4) and the solutions of (5.5) which
satisfy the auxiliary constraints (5.3). The reason is that the constraint evolution
system is closed:

Ope; = ((Aoo)k + (Do)k) ;¢ + Dikck. + (Do)kjaickj + Dikjckj, (56&)
Oycij = D[jkai]ck + D[jklai]ckrl- (5.6b)

Having (5.4) and (5.6) one can show by induction that dic;, . ;. is equal to a linear
combination of the auxiliary constraints (5.3) and their spatial derivatives.

Principal part: The principal part of the FT(N — 1)S system (5.5) is

8 ~ ((Aoo)k + (Do)k) Ao + (Do)kjak.dj, (5.7a)
Ovd; ~ (B®106F + (D)%) 9xv® + ((A%)76F + (D);*7) Od; + A%19,0*, (5.7b)
Ot = ((B*10)E + (D)) 0y, . ... O, 0°
pt1
+ ((A")E 4+ (DM)E) O, ... Ok, di,yy + Y AP0, (5.7¢)

v=1
Nt = (BN M)k + (DN THE) Ok, L Oy, 0
N—-1
+ ((ANilo)E + (DNﬁl)E) 8k1 ce. 8kN71de + Z ANﬁlyvy, (57(1)
v=1
where p=1,...,N — 2.
For the ordering of variables (v°,d;,v,... v
FT(N — 1)S reduction (5.5) becomes

N=1) the principal matrix of the

An_1PiL? = (5.8)
(A3 ((A%)F + (DY) (g D) 0
(Ao )i ((B10)0F + (D)%) (Ag i ((A%)70F + (D)) (Ag(Ly))ii(A%)aF
(ANL OR((Br1 o)k + (DM)E) (ANZL ) (AW + (D#)T) (ANZL) Yo (A, )k

where p,v=1,...,N — 1.

Note that
(AN (A8 = (AN)E(A%)", (5.92)
(AL, = (AN)F(A%), (5.9b)
(ANZL ) (Ar)EIN=1 = (AN (A0, (5.9¢)
(Ag\;/;‘:ll)(ufl))i = (Aﬁfu)é (5.9d)

Hence, if we rename ¢ — iy_7 and j — jy_1 and assume vanishing reduction
parameters D then the FT(N —1)S principal matrix has the FTNS principal matrix
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as a submatrix:

* 0
AN 1 Z TIN— 1JN71 = <* ANp_7> . (510)

The FT(N—1)S principal symbol can be obtained by the appropriate contraction
of the principal matrix with a spatial vector s:

[ (%) 4 (DV)R)sy
Pi_yi = | (B 108 + (D)ib)s
(B0t + (DP))s

(DO)k’jSk ~ 0
sic ((A°0)76F 4+ (D)) s (A%)s: ],
g (( )J =+ (DM) )Sg (Aﬂu)ﬁskflﬂrl

where s} = 53, ... 5,

5.2. FTN S strong hyperbolicity

Definitions of strong hyperbolicity: Having defined reductions of FTNS sys-
tems to FT(N — 1)S systems we now give two definitions of strong hyperbolicity
for FTNS systems and show their equivalence. The first definition makes use of the
FT(N — 1)S reduction.

Definition 4a. The FTN S system (4.4) is called FT(N —1)S strongly hyperbolic if
there exists an FT(N —1)S reduction (5.5) which is FT(N —1)S strongly hyperbolic
in the sense of definition 4b.

The second definition does not rely on any reduction to lower order systems. Note
that for N =1 it is consistent with the standard definition of strong hyperbolicity
for fully first order systems [14].

Definition 4b. The FTNS system (4.4) is called FTN S strongly hyperbolic if there
exist a constant My > 0 and a family of hermitian matrices Hy(s) such that

Hy(s)PY = (PX) Hn(s),
My'T < Hy(s) < My I, (5.12)

where the matriz inequality is understood in the standard sense (2.11).

Equivalence of the definitions: We now demonstrate that the two definitions
of strong hyperbolicity are equivalent. There is no major difference to the case of
N = 3 which was discussed in section 3.3.

2+1 decomposition: For the proof we apply a 2+1 decomposition of the re-
duction variable d;. Let ¢ be the orthogonal projector of s, then the reduction
variable is written as d; = q;“dA + s,ds, where das® = 0. With the state vec-



Huyperbolicity of high order systems 23

tor (v°,d4,ds,v', ..., vVt the principal symbol (5.11) becomes
Py 4P = (5.13)
((A%)* + (Do)k)sk (_DO)_kjskqf 0 0
(D)i*srqly _ (D)% skq] qy 0 0
((B%10)f + (D)i*)sps" ((A%)76F + (D); kj) skqps' (A%)s; A0,
v+1
((Br1o)E+ (DM)E)shy  ((AP0)X + (DM)E7) siigP  (AFo)MIslis; (Ar, ksl ™"

Definition 4a = 4b: Assume that definition 4a is satisfied for an FT(N — 1)S
reduction (5.5), i.e. there exist a constant My_; > 0 and a family of hermitian
matrices Hy_1(s)*P such that
Hy-1(s)"P PY_15% = (Py_15™) Hy-1(5)", (5.14)
Myt 147 < Hy i ()P < My 147,
where I45 is the appropriate identity.
Since (5.13) is a block triangular matrix with the lower right diagonal block

0 jS A0
(((:,u zk i (A# ;Lllg n— u+1> :Pj‘iﬁ (515)

the same arguments used in section 3.3 can be applied to show that in an appropriate
decomposition of Hy_1(s)4? the lower right block is a bounded symmetrizer of P3.
Hence, definition 4b is satisfied.

Definition 4b = 4a: Conversely, assuming definition 4b is satisfied for an FTNS
system (4.4) one can identify an FT (/N —1)S reduction which is strongly hyperbolic.
We make the partial choice of reduction parameters

(DO)F =—(A%),  (D)i* ==(B%10)0],  (D")r=—(B"10)%  (5.16)
for p=1,...,N — 1. With this choice (5.13) has the form

00 0
Py 4a%=(0x% 0o |, (5.17)
0YE Py

where X7 is the same matrix, (3.26a), as in the FT3S case, X7 = (D);* srq7 ¢'y,

and
0 \jsk N).kj S BSZ
- (GREBE) e

The same procedure that we used for FT3S systems in section 3.3 allows the
identification of a strongly hyperbolic FT(N — 1)S reduction. The key in this pro-
cedure is to choose

(D)% = ixe;*, (5.19)
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where A € R. With this the eigenvalues of X% are £ and if A is sufficiently large
then one can show that definition 4a is satisfied using the assumption that the
properties of the principal symbol in definition 4b hold for Py,. O

6. Higher order symmetric hyperbolicity

In this section we show that one can extend to notion of symmetric hyperbolicity
to higher order in space systems. For reasons discussed in section 3.4 we follow the
strategy to employ a direct reduction to first order.

6.1. Reduction of FTN S systems to first order

Reduction variables: We start with the description of the reduction to first order
for the FTN'S system (4.4),

p+1 w p—rv+1
Ot = Z AF Y+ Z Z é"puv” + s* (6.1a)
v=0 v=0 p=1
N-—-1 N—-1N-—v
at,UNfl _ Z ANfly,Uu + Z Z BNflpyvV
v=0 v=0 p=1
+ sV (6.1b)

with p = 0,..., N —2. The reduction variables which we define are denoted d¥. The
two indices have the following meaning:

1 | the reduction variable refers to v* in the original
FTNS system

v | the reduction variable has v derivative indices
(1I<v<N-p-1)

The reduction variables are defined as

(d))i = (dY); := 00", (@))ir.i = (d)i = O, (d)_1)is...00) (6.2)
where p = 0,...,N —2, v = 2,...,N — u — 1. For convenience we also use the
notation

(dh) = (d); = v, (6.3)

One finds that the important variables for the principal part of the first order
reduction are those with the highest number of derivative indices, i.e. d’XF y—1- We
abbreviate them as

(@)i = (dy_,—1)is (6.4)

where p=0,...,N — 2.
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Unmodified equations of motion: Using these definitions the equations of mo-
tion for the reduction variables can be derived by taking derivatives of (6.1a). One
finds

pt1
Ou(dlh); = A", 05, ... 050" (6.5a)
p=0
mop—ptl
+3 D B, 0, 0,07 + 0y, . 0 8",
p=0 o=1

where p=0,...,.N—2,v=1,...,N —pu— 1 and we used

AP0, . 05 0P = (A )T demetr g 0,0, ... D

Ju—p+1

0P, (6.6a)
vP. (6.6b)

21 ) P — (BP . )1 du—p—ot1 . 9. )
Bty 05 ... 0 0° = (Bl )7 dnmeme 10y 00 03,05, ... 05,
The terms 0;, ... 0;,s" in (6.5) do not contain the d or v* and can be seen as given
source terms.

Auxiliary constraints: The reduction variables are subject to the following first
order auxiliary constraints

(i1 (dh—1)iz i) — (dD)iy i (6.7a)
i1 (dﬁ)izmiwrl - 8(i1 (dﬁ)iz...iwrl)v (67b)

where p=0,....N—-2,v=1,....N —u—1.

First order reduction: As before we ask now, which first order systems can be
constructed by adding the constraints (6.7) and their derivatives to the right hand
sides of (6.1) and (6.5).

We note that lower order derivatives of the v# (i.e. derivatives of order N — i —1
or smaller) can be written as linear combinations of the constraints, their derivatives
and undifferentiated reduction variables. For y =0,...,N -2 and v =1,...,N —
u — 1 one finds

v—1 v—2
(92‘1 o (r“)iy’[)“ = (d’;)l + Z (“)Z-l - 6ip (Cﬁfp)iwrl.‘.iy + Z Bil - aip (ngpfl)i/#yuiw
p=0 p=0
(6.8)

where the sums are understood to vanish when the upper bound is smaller than the
lower bound and the terms with p = 0 should be interpreted as the undifferentiated
constraints.

One can prove this by induction over v. For v = 1 we get

8i1UH = (Cﬁb)il + (dﬁb)ilﬁ (69)
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which is of the form (6.8). Assuming that (6.8) holds for a certain v we get

. . n_— A.
811 e alu+1v - 811 (d )l dyg1 + 611 2812 . u p+1)2p+1 Ayl

+ a'Ll Z 812 . )1p+1 Zu+1 . (6.10)

In case v < N — pt — 1 the first term on the right hand side can be rewritten:
0y () )ig.civir = Oy (A1) ) F (E)ir i = (diyp1)i + (cpy)i + (€))i- (6.11)

Hence, defining 7 = v + 1 one gets

Dy, ... 010 +Za“... o (Ch_ i Zu+Za“... o (o )i i

(6.12)

forpy=0,....N—2and v =1,..., N—pu—1. Likewise one finds for y =0,..., N—2
andv=N—pu

N—p—1
. . H_— 9. M E
821 ".aZN—[l,v _a'll(d i2...IN — ,L+ all" ip CN n— p)1p+1 AN—p
p=1
N—p—2
+ > 00, (B Dinrin (6.13)

p=1
which is just the derivative of (6.8) with v = N — p — 1. This shows that when
deriving a first order reduction all lower order derivatives of the v* can be com-
pletely absorbed into the constraint additions and that up to constraint additions

the highest order derivative of v* becomes a first order symmetrized derivative of
dr.

Reduction parameters: The ambiguity of adding arbitrary linear combinations
of the auxiliary constraints (6.7) to the right hand sides of the first order system is
parametrized by using reduction parameters. We denote the constraint additions as

DXUVCZ = (DXUu)ilmia(CZ)il---iaa DXU Cp 1= (DXUV)“ ot (€5 )iy..

o419

(6.14)
where v = 0,...,N —2 and ¢ = 1,...,N — v — 1. Depending on the equation
where we add those constraints the index X is either a single index (in the case of
constraint additions to the right hand sides of v*) or an index-tuple (u, A, 41, ...,7))
(in the right hand sides of d%). The matrices (DX7,)"% and (DX7,)i o+
are the reduction parameters. Without loss of generality we assume the symmetry
properties

(DX oy)il.“ia _ (DX UU)(il...ig)’ (DX oy)(i14..i0+1) — 0’
(DX O’y)iliz...ig+1 — (DX Uu)il(i2---ia+1). (6.15)
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The constraint additions on the different equations are independent of each other.
We use the short notation
N—2N-v—1 N—2N-v—1

SIS Sl Sl

where X has the same meaning as in (6.14).

(6.16)

Reduced equations of motion: With these findings the right hand sides for
the v in the first order reductions of (6.1) have the form

p+1 pn—rv+1
ot =CH 4+ sH + Z dll: V+1  + Z Z /_L prJrl)l?
v=0 v=0 p=1
N-2
at’UN_2 — CN—2 + 5N—2 + Z(AN_2V)l(dy)l+ (AN_QNfl)’UN_l
v=0
N— —_p—
Z B
v=0 p=1
N—2
(')tvN‘l = Z (AN‘l,,)ﬂo”'j(d”)l- + (AN_lN_l)Jaj’UN_l + cN-1 + SN_l, (617)
v=0
for y =0,...,N — 3. Likewise one finds the equations of motion for the reduction

variables in the first order reduction
pt1

Oh(dy): = (CF)i+ 07, ., SH+Z(AMV)*(dZJrafqul)h...ial
p—v+1
+ Z Z H+U*U7p+1)i1...iai7 (618&)
v=0 p=1
pn+1 N
j v N—p—1
0u(d")i = (A*)L(AN) T 0 (d )y + (Ch_yoy)i + 05 i 8"
v=0
n p—v+1
+ Z y\f—l/—p)i]-.i}vfuflj;a (618b)
v=0 p=1
N-2 A
Ou(dN72); = > (ANT2)20(d”) gy + AN TN 100N T (CF ) + 08N
v=0
N—-2N-v-—1
+ Z Z BN 2 J y\/’ v— p)z_]7 (618C)
v=0 p=1

where u =0,...,N-3ando=1,...,N— ,u 2. The C* can be read off from (6.16),
and in (6.18b) we used the symbol (AN ), which is defined in (4.7b). We call a

system of the form (6.17),(6.18) a first order reduction or FT1S reduction of the
FTNS system (6.1).
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Principal part: We now write the principal part of the first order reduc-
tion (6.17),(6.18) in a standard form. The terms that contain derivatives in the
constraint additions are

N—-2N-—-v—-2
S e g, @
v=0 o=0
N—-2N-—-v-—1
+Z Z (DXUV)“”'Z”Hail(dg)izwiaﬂ
v=0 o=1
N—2 —3N—-v-2
(DXl Zla ’U + Z Z DXU IL ”7’6+18’i1(dg)i2mia+1
v=0
N-2
=+ (DX(N_V_l)y)“m”viuah(du)i2..‘iN—w (619)
v=0

where
(DX Uy)il---ia+1 — (DX oy)i — (DX (U+1)y)i1...ig+1 + (DX ay)il...ig+1 (620)

and we used the symmetry properties (6.15) of the reduction parameters. The sym-
bol ~ means equality up to terms without derivatives and X has the same meaning
as in (6.14). We write the state vector as

U = ((dg)iv v, (d#)ia w)T , (6.21)

where the bounds for the indices are p =0,...,.N -2, 1 =0,...,N —3 and 0 =
., N — [i — 2. The principal part of the system (6.17),(6.18) is then

s = Ar?2,u;, (6.22)
where
APt = (6.23)
(DF,#5) 1 (DP, 1) (DA N-v-1,).pi 0
([)upg)i; (Duly)j; (D;L(Nfufl) )’pj 0
(D#N_H_lm)ipl (DFN—p—1')i? (Am)k (Aftvl/)zk 4 (DHy_py N7V )PE 0
(D(Nfl)PD)Pi (D(N 11 )P (AN 1 )pj+(D( —1)(N—v— 1)D) j (AN~

and we used definition (4.7) for the symbols /NIW and A;VV. The range of the various
indices in this expression is g, v =0,..., N -2, 4, v =0,...,.N—=3,0=1,...,N —
p—2and p=1,... N—v—2.

Auxiliary constraint evolution: Having defined what we mean by first order
reductions of the FTNS system (6.1) we note that again there is a one-to-one cor-
respondence between the solutions of the first order reduction (6.17),(6.18) which
satisfy the auxiliary constraints (6.7) and the solutions of the original FTNS sys-
tem (6.1). This property of the reduced systems is a consequence of the construction
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procedure, which leads to a closed constraint evolution system. To see that the con-
straint evolution system is closed is straightforward. One just uses equation (6.8)
to express the reduction variables by derivatives of the v# and constraints. In the
right hand sides of the constraint evolution system the derivatives of the v* cancel
due to their symmetry in the derivative indices. This leads to the closed constraint
evolution system. However, one obtains very lengthy expressions, which we present
in appendix Appendix D.

6.2. FTN S symmetric hyperbolicity

Definitions of symmetric hyperbolicity: To get definitions of symmetric hy-
perbolicity for FTNS systems we generalize the second order definitions given in
[11]. We start by defining candidate symmetrizers.

Definition 5a. Given an FTNS system (6.1) we call a Hermitian matriz H]lvl =

H]%) @) such that the product matriz

SNHAFAR 15,8, (6.24)
is Hermitian for every s an FTNS candidate symmetrizer.

When we refer to lower order systems then we require the existence of a first
order reduction such that there is a candidate symmetrizer in the usual first order
sense:

Definition 5b. We call a Hermitian matrix H%l =H P @ 4 first order candidate

symmetrizer of (6.1) if there exists a first order reduction (6.17),(6.18) such that
the product

H{2 AL sy, (6.25)
is Hermitian for every s.

In both cases we call a positive definite candidate symmetrizer a symmetrizer.
With this it is straightforward to define symmetric hyperbolicity with and without
reference to a first order reduction

Definition 6a. The FTNS system (6.1) is called FTNS symmetric hyperbolic if
there exists a positive definite FTN S candidate symmetrizer.

Definition 6b. The FTNS system (6.1) is called first order symmetric hyperbolic
if there exists a positive definite first order candidate symmetrizer.

Relationship between the definitions: Now we show for arbitrary IV that defi-
nition 6b implies 6a. The proof of the reverse direction for arbitrary N involves very
complicated expressions. We show in appendix Appendix B that for N = 3 it is
indeed true that 6a implies 6b. For N < 4 we checked this using computer algebra.
However, whether the statement holds for arbitrary IV is an open question.
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Construction of Nth order from first order candidates: Let Hil be the
candidate symmetrizer of a first order reduction with principal matrix A}xZ. We
group the state vector (6.21) as

wg o= ()0 | (@) w) (6.26)

and in this way decompose H; and A; consistently into

i (HPH AR L ALy
= Ttz ) AVl = ( pre s 12n ) (6.27)
! (HQf Hﬁ) e A21k -/422k
where
AP I — (DﬁUN—y_ly)Lpl 0
12k~ — (Du (N—u—l)V)Pl 0/’
( ) B —V— j
i — [(AEARL G + (DF N M) 0 (6.28)
22k (AN 1Pl 4 (D=1 (N=v=1) ypj (AN=LN_q)P 7 .

i.e. such that Ay is the lower right 2 x 2 block of (6.23). In this decomposition the
lower right block of the product Hi% AP, 7 is

ik 1 L k 1
Hyp Aly? + Hig Abor?. (6.29)

Hence, the matrix (6.29) is Hermitian for every p, because it is a principal minor of
k
HZ ./41 k=
Moreover, because SL»N is Hermitian for every s, we get that (6.29) contracted
from left and right with SL»N is Hermitian for every p as well. Thus,

SN HEF AL L5, SN + SN H3Y ALy 5, S (6.30)
is Hermitian for every s. On the other hand
.All)QElSpSJN = 0, .AZQ)QEZSPSJN ANk SpSN7 (6.31)

because the symmetric part of the reduction parameters contained in A and Ao
vanishes.

Since Hsyo is on the diagonal of H; it is Hermitian as well. Thus, with the
identification

HiE = HiE (6.32)
there exists an Nth order candidate symmetrizer.

Positivity of the FTNS candidate symmetrizer: Moreover, if Hil is positive
definite then also H%f is positive definite, because it is a principal minor. Hence, if
there exists a first order reduction of (6.1) which is symmetric hyperbohc then (6.1)
is also FTNS symmetric hyperbolic with the symmetrizer H7 N* = H§2E
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Construction of a symmetric hyperbolic first order reduction: Now, for
the reverse direction we assume a given FTNS symmetrizer, Hi,l, and would like
to show that there exists a first order reduction with symmetrizer

F;il...z’p)(jl---jp) 0

oY = 1 e : (6.33)

(in the 2 x 2 decomposition (6.27)) with
Dhtodiode = ydt | ytode (6.34)

and p such that the F ? has the appropriate number of indices. Obviously positivity
of H2Z N 1mpheb positivity of H’ 17, 1.e. we only need to show the conservation property.

To identify an appropriate reduction to first order we first make the partial
choice of reduction parameters

(Dxau)i: 0, (Dxau)i: 0, (635)

forv=0,....N—3and o =1,...,N —v — 2, i.e. only the reduction parameters
which correspond to the constraint additions with the highest number of derivative
indices remain. As in (6.14) X denotes either a single index ¢ =0,...,N —1 or an
index tuple (p, A, 41,...,ix) with u=0,...., N—2and A=1,... N —pu—1.

With that choice most of the components of A}, vanish and the statement
which needs to be shown is that there exist reduction parameters such that

ij 5
Hy AR sy (6.36)
is Hermitian for every s, where
A?VQE = 'A;;)VQE + D%lk (6.37)
and
_ i (D/LN_ _lN—u—ly) pk 0
Dy~ = ( (D(Nfi) (nyq)y)%@ e (6.38)
We define
i 0,....,N—1 iE 17
(TRE5) o Ty = TN = Hy ARS, (6.39a)
ik V=0, N—1 ik, ij k
(‘]5177)” 0,..,N—=1 JN© = Hy wa ’ (6.39b)

where it is understood that decomposition of T and Jy into T}, and J,, is the
one induced by the original FTNS system (6.1).
One finds that the hermiticity of (6.36) is equivalent to

)
TREE 4 JREE = (TR TRE) T v (6.40)
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In components equation (6.40) is

Jh il - gledty pfbdt gy, (6.41)
From definition (6.39b) we see that the J,, need to satisfy certain symmetry
conditions:

Tt =0, it = iR (6.42)

fory=0,...,N—1,v=0,...,N — 2. Note that
(plilg) i
Jw T =0 = Jﬁ(Nﬂ) =0. (6.43)

Since Hy is an FTNS candidate symmetrizer and due to the fact that certain
symmetries hold for Hy and Ay the T}, satisfy

t(pji)

(pig) ij @ ()
T =T, Tt =Th" (6.44)

for u,v=0,...,N — 1.

Now, assuming a given J,,, which satisfies (6.42) we can easily calculate the
reduction variables Dy by multiplication of Jy from the left with H&l (which
exists because Hy is positive definite by assumption).

Hence, the existence of a first order reduction with candidate symmetrizer H; is
shown if we prove that there exist J,,, which satisfy (6.41) and (6.42) given (6.44)
holds.

One approach for the proof of this statement is the following. One defines

foi = Tﬁl - ijii, (6.45)

which satisfies

Vit = _ypit vpad g, VR 0@, (6.46)

Then one uses the ansatz

D S 7 (6.47)

TES(eN—p—v—1)

in equations (6.41) and (6.42) to get a linear system for the coefficients x. If one can
show that this linear system has a solution then the existence of a first order reduc-
tion with candidate symmetrizer H; follows with the arguments given above. This
procedure is shown for N = 3 in appendix Appendix B and we performed the same
calculations for N < 4 using computer algebra. In this Mathematica notebook we
are using xTensor [21], it is available online [1, automatic_construction_of_J.nb].

For arbitrary N the number of coefficients increases like N!. Although many of
them can be considered redundant because of the symmetries of V,,, and J,,, the
construction of the linear system for the z, is difficult for arbitrary N. Therefore
we leave this question open.
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Connection to energy conservation. Given an FTNS symmetric hyperbolic
system it is straightforward to show that the quantity

E:= / & ul Hyju; (6.48)

is a conserved energy in the principal part, i.e. £ > 0 and 9;F ~ 0. To show
this one uses the positivity of H ]U\; and the equations of motion (6.1) together with
integration by parts:

1 N—-1
O F ~ 3 Z /dg’xéw
p,v=0
1 N—-1 o
=3 Z (71)1\'7"71 /devT“Vf,}l@;ZN_”_V_UUV =0, (6.49)
w,v=0

ey = (a.(N*“*%W) Tt ol v + (a;f*’%w) T 9N e (6.50)

2N—p—v—1) v
O T = 0,05, . B, 05, Djy 0 (6.51)

Since v* is an arbitrary solution of the equations of motion this implies that there
exist fluxes ¢, such that

él"V = P¢£D V‘LL,I/ = 0,*"7N* 1. (652)

The existence of a symmetric hyperbolic first order reduction with the sym-
metrizer Hfl means that there exist fluxes ¢f,, of the form

N—p—1 N pij N—-v—-1)
P, = (3@( ey ) gt oy, (6.53)
with
A e oA (6.54)

i.e. that the v* appear in the fluxes only with (N — p — 1) derivatives.

7. Conclusion

We described how the existing notion of strong hyperbolicity for first and sec-
ond order in space evolution equations [14,11] can be extended to FTNS systems,
i.e. evolution equations of arbitrary spatial order. The definitions of FTNS strong
and symmetric hyperbolicity allow for the direct construction of well-posed initial
(boundary) value problems for systems of higher order.

This extension is achieved by proposing a reasonable definition of strong hyper-
bolicity for FTNS systems and showing that this new definition can be reduced
to the lower order equivalent. The proof is performed with the help of an iterative
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differential reduction of the FTNNS system from arbitrary to first order. One finds
that an evolution system is FTNNS strongly hyperbolic if and only if there exists a
first order reduction which is strongly hyperbolic in the standard first order sense.
We also considered symmetric hyperbolicity of FTNS systems. In this case one
finds that it is better to introduce a direct reduction to first order instead of using
the iterative method applied to prove statements about strong hyperbolicity. We
proposed a definition of FTNS symmetric hyperbolicity and were able to show for
N < 4 that it is equivalent to the existence of a direct first order reduction which is
symmetric hyperbolic in the standard first order sense. For higher orders we were
not successful in showing equivalence, but only one direction, that the existence of a
symmetric hyperbolic first order reduction implies FT NS symmetric hyperbolicity.
There are various questions which can be addressed in further analysis. One is
that the proofs about strong hyperbolicity rely strongly on three spatial dimensions,
because the Levi-Civita symbol €;;;, is used. Whether a similar construction is pos-
sible for other spatial dimensionality is not known. For symmetric hyperbolicity the
spatial dimensionality is not used in the calculations, i.e. the results apply to any
dimension. However, as mentioned above, equivalence for N > 4 is not yet shown.
Finally, it is essential for the construction of approximate solutions to identify
good numerical methods. Therefore it is also of interest to analyze the connection
between high order hyperbolicity and e.g. stability of finite difference methods.
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Appendix A. Pseudo-differential reduction method

Reduction variables: To define strong hyperbolicity, in the literature a pseudo-
differential reduction method is used, see for example [23]. With our calculations
from section 5 it is straightforward to apply this method to FTNS systems as
well. One takes a Fourier transformation in space of the FTNS system (4.4) with
wave number w; = |w|s;. The Fourier transforms of the v* are denoted o* and we
introduce a reduction variable d° := i|w|0°.

Principal part: Using the reduction variable the principal part of the Fourier
transformed system (the terms with the highest order of |w|) can be written as

o0 (NI ) i (NN, (A1)

where P§ is the principal symbol, (4.9), of the FTNS system (4.4) and the non
principal terms not shown here are lower order in |w|. Applying this reduction (N—1)
times results in a first order pseudo-differential system with principal symbol P5;.
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Hence, using definition 4b, an FTNS system is strongly hyperbolic if and only if
there exists a strongly hyperbolic pseudo-differential reduction to order (N — 1).

Appendix B. FT3S symmetric hyperbolicity through direct first
order reduction

Problem statement: In this appendix we perform the main steps in showing
that every FT3S candidate symmetrizer implies the existence of a direct first order
reduction with associated candidate symmetrizer. That is, we perform the calcula-
tions which show that the system (3.54),(3.56) has a solution provided that (3.52)
holds.

We start with repeating the system of interest in a compact form. With the
definition (3.55), i.e.

yPpiikl . ppijkl _ pipklij (B.1)
equation (3.52) gets
yeiikl) _ (B.2)
and VP9 k automatically satisfies
yriikl — yp (i) (kl) (B.3)

We are going to use these properties as assumptions in the proof that the sys-
tem (3.54),(3.56), i.e.

JPUK— gpG) (K)o gLk — o gkl _ gteklig — _ypidkl (B 4)

has a solution.
We do this by explicit construction using the decomposition

ijkl Jpijk Tpij
y S T T8 T T
pijkl _ ikl ik i
J = | JpiRC JgPiE gPro] . (B.5)
kl k
Joi Jow  Jiow
The construction procedure is performed for each component in this decomposition
separately.

uw-, vw- and ww-component: We start with the most simple cases, Jyw, Jow
and Jyw. As we can read off from definition (B.1), the following equations hold

VY =—ved, vl = vl Vii= Vi  (BS

wu

Using this and choosing

Thw =0, Jh,=0, JRT=-VEE JRd =0, Jh=-VIF (B7)

wv )
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one finds that

T = Il =0= V&) = Vi, Tk - T = Vi = -V

Tow = ib" = =V, i = JWRY = VIRV = =Vi7,
Tl = %Y ==V, Tt = =viph =0,
JPR) — _y ek — g, (B.8)

Hence, (B.7) is a solution of the ww-, vw- and ww-components of (B.4).

uu-component: Solving for the uu-component of J involves the most lengthy
calculations. Using again the FT3S conservation property

Vi o) =0 (B.9)
one finds that one solution of the UU-component of (B.4) is
JPITRL— _q joyPidkl _ g ooy Pkt _ 3 /90yp M 1 j20vP R — 7 /00 VP K
+1/20VF R L7 /20VE R 9 /20VE TR 43 /20VE M (B.10)
with
VPR = vE,
ik okl
‘ uu ’
4V3pij kb _ Vl;tuuikjl + Vupjkil + Vfuﬂjk + Vé)ujlik7
2v4pij kl — VJ&U kl + quupi kl7
AP = VU VIR ViR L VI,
2V6pij LU ykplij + Vipkij
: uu uu ’
AVPIR = kil kel yleidk | ik
QP kL yiklpi |y klpi
° uuw uu ?
AV = VIR VIR VIR L VI,
ig kl . yrkigpl lij pk
2‘/1%” T Vuu” b + Vutltjp ’
AVRIHRE . — ykilpi y ykitpi g ylikps 4y Likps (B.11)
The solution (B.10) is not unique. If J,, solves the uu-component in (B.4)
then JPi* 4+ WP ig also a solution for every W, that satisfies
WJ&? klij _ WQIZJ,] kl7 Wl(gj ij |kl) —0= Wézkl) ij’ ijl iy Wfrjkl) (z])
To construct (B.10) we make the ansatz that J,, is a linear combination of V,,,
with permuted indices. Since J2i7* needs to be symmetric in (i,3) and (k,1), and

since also V2 ¥ is automatically symmetric in (4, 5) and (k,[) the number of inde-
pendent coefficients reduces to 11:

11
TR =N an VR, (B.12)
N=1
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where the Vy can be read off from (B.11). Note that

tpkliy pijkl tpklig pij kl tpkliy _ pij kl
Vl __Vl ) V2 __VQ ) VS __V3 ’
tpkliy pijkl tpkliy pij kl tpkliy _ pij kl
V4 - _Vlo ) V5 - _Vll ) V6 - _VS ’
V7Tpklzj _ _‘/gpmkl' (B13)

Using the ansatz (B.12) together with (B.13) in the wu-component of the last of
equations (B.4) one finds a linear system for the coefficients x;. The solution of this
system restrict the possible choices of the coefficients to

£C1:—]./2, SUQZO, 1'3:0, rg = —Tg,

Tr9 = —T7, 10 = — T4, 11 = —Ts. (B14)
Here we did not rely on the conservation equation (B.2). Analogously, using (B.12)
and (B.14) in the second equation of (B.4) one finds that making the choice

9 3 1 7
Ty 20’ Ts5 20’ Te 20’ T 20 ( 5)

leads to
JWPLTIRD = 1 joy (pij k), (B.16)
One can verify this by using
Vpiik) _ %(Vvlpijkl I V2pijkl +4V3pij ki +2V4pijkl +4Vv5pij L 2V6pij ki
I A A (A (A B (s

Hence, with the choice (B.14) and (B.15) the ansatz (B.12) results in the solu-
tion (B.10) of the uu-component of (B.4) provided that the uu-component of (B.2)
holds.

vv-component: For the vv-component the calculations were already done in [11].
The approach is the same as for the uu-component. One finds that
JPIF = —1/2VEIF 4 1/6ViFP — 1/3VPF +1/3V51P (B.13)
solves the vv-component of (B.4) provided that the vv-component of (B.2) is sat-
isfied.
uv-component conservation: Finally one can show in a similar way that
JPik — _3/4ypiik 41 /9yp k@) 4 3/4ykiap 1 /9y kpED) (B.19a)
ThEH = —1/AVEEY —1/2VE IR — 3/AVEED 4 12V 0 (B.19b)

is the desired solution for the wv-component of (B.4).
Here it is interesting that one does not need to start from the most general
ansatz that .J,, and J,, are linear combinations of both, V,, and V,,,, but that a
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more restricting ansatz is sufficient:

JPIE — g VPR g VPRED) 4o VRGP 4 g, Y EPGEI) (B.20a)
+ xSVu(j}j)kP + xGVu(’ij)Pk + .137Vu(:}‘ pk |j)’
JEIE = agVEET 4 »TQvau(ij) P Vel + 9311‘/1)’2(”)1’ (B.20b)

+ xuvv(ilpklj) + mwv@(ﬁl kpls) | $14Vv(7ij)pk.
The basic reason for that is
L A (B.21)
Using this ansatz as before in (B.4) one finds that (B.19) satisfies
J%’jk — ng(ij) k’ Jﬁf,’,‘ ij |k) — 0, Ji(;ﬁl klij) — Vv(gkij)_

Altogether this shows that each FT3S candidate symmetrizer implies the exis-
tence of a direct first order reduction with associated candidate symmetrizer.[]

The above calculations are presented in completeness in the Mathematica note-
book flux_construction.nb which can be found online [1].

Appendix C. Problem in construction of FT2S symmetric
hyperbolic reductions

In section 3.4 we mentioned that we cannot use FT3S symmetrizers to construct
symmetrizers for FT2S reductions. Here we explain why this approach does not
work.

C.1. Simple construction of FT2S symmetrizers

Given an FT3S symmetrizer, H. éaj b, the natural first step in the construction of an
FT2S symmetrizer, H ®, is the ansatz

ij ab /yij 0
HY " = ( 0 Héajb)' (C.1)

FT2S conservation equations: The terms which contain reduction parameters
in the product of Hy with the FT2S principal matrix, Hy’ **.45,%,¢, are given by

inp 0 0 0 (Du)k (Du)kc 00
ke _ | 0 Hizr mr S | [ (D0 (D) 00 o
= o mp gy oa, || o o 0o ©F

0 HP HP. Hyy (Dw)PE (Dw)PRe 0 0

where we already contracted a couple of §’s. If there exists an FT2S reduction which
has H,’ @ as a symmetrizer then, according to the definitions in section 2 and the
antisymmetry of the reduction variables, the following equations are satisfied

j(pik) ac __ j]‘(p ki)ca _ V(pik)ac’ jpik ac _ _jpicak, (03)
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where
Vp ikac _ H;J abfigjkbc _ Agpijangk be (C4)
and
~12’jkbc = Alz)jkbc|D:o,D:0 . (C.5)
Assume that (C.3) has a solution
jpikac — Vpi[k\a|c], (06)

where VP ¢ is a matrix that does not contain D or D. To find the corresponding
solution for the reduction parameters one multiplies (C.6) from the left by the
inverse of H* and gets

07 (D)* 87(D) 0.0

_ 7pik ac 5PDbk5prkCOO ! — /P ilk|alc

5 ibad P = ﬁ’EDZ)k 5%51)))1& 00|~ Hy Y jipa VP, (C.7)
J J

This implies that H{ljibavl’i[k‘ak] has the same structure as H{ljibajp““ ¢ In
particular the (2, 2)-component of this product must be of the form 5;7‘7221,’“ and the
last two columns need to vanish. The counterexample given in appendix C.2 shows
that this is not always the case, i.e. there are FT3S systems for which there exists
no FT2S reduction with the symmetrizer H;j > This does not mean that there is
no symmetric hyperbolic FT2S reduction, but if there is one then its symmetrizer
has no direct relation to the given FT3S symmetrizer.

Discussion: The problems in the construction of a second order conserved energy
from a given third order symmetrizer can be attributed to the fact that the prod-
uct of H2_1 and J contain 5?. If e.g. the (2,2)-component of this matrix was not
6§(D)b’“, but (D);,P* then this would not restrict the form of the (2,2)-component
of Hy ' jipa VPUIFlalel Thus, in order to avoid these problems we need reduction pa-
rameters with two lower indices. This can be achieved by using a direct reduction
to first order and construct a first order symmetrizer from Héaj b, as described in
section 3.6.

C.2. Not every FT3S candidate has an associated FT2S candidate

In what follows we present an example where the conserved energy of
a third order system is not the energy of any second order reduction
in the sense of section 3.2. The calculations are done in the notebook
counter_example_3rd_order_sym hyp.nb which is available online [1].
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Counterexample: Our counterexample is the following FT3S system

Ou = ay,, 0,u + a¥, 0yt + Gy,

— o xy yy z y
Owv = aj,. 0,0,u + a3 40, 0,u + a¥% 0,0 ,u + a3, 0,v + a¥,0,v + ayupw,

(C.8)

O = A% 0,0, 0t + %10, 0,0y + %Dy 0y Dyt + a¥2Y 8,0, Dyu + a5 Dy Dyv

+ a0, 0yv + a¥¥ 0,0,v + aj,,,Ozw + a2, Oyw,

with
17273 12951
T o - - O — 1 = —
Guu = 7384 o = 5 Guv = 74768
v 2855 oy 8575 v 1095
Apu = ~Tqan? Ayu = ~ T 1ana’ Aoy = T 5700
v 1846 44304 3692
1
aiv = 17 agy = 3> Ayw = 17
2
1 1
amzfc P axzy _ - aatyy —
wu 2 I’ wu 97 wu ’
1 1
vy _ Tz _ Ty _ =
awu - 37 awv - 17 awv - 107
a¥¥ =1, an, =1, a¥,, =1

It has the conserved energy

8k61u
Ey = /de (0:0;u, O;jv, w) HY L oo ]
w
with
H M HgP H,
HUE _ | pgtkli pik  pri
HT5, HY, How
In the upper left we have
B B B BTN (1000
priakt _ | Pt R Rt R [010 0
“ R D™ his™ hia?? 001 0
hETyy pTUyYy pYryy pYyyy 0004/27
next the off-diagonal components
hiiwe oy 1/2 0
= | me e | {10 )
hyze By 0 0

h¥yT pyyvy 0 1/3

(C.10)

(C.11)
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the vanishing terms

hoe 0
g By 0
HY — uw _
h¥y 0
and the simple remaining
: hEe hy 1 1/10 :
ik __ vv Yov _ T T —
H““(hff% h%)(l/lo 1 ) How = (o B ) = (00),
Hyw = 1. (C.12)

Nonexistence of an FT2S symmetrizer: Given the system (C.8) and the sym-
metrizer (C.11) the construction of a second order reduction with symmetrizer

ik 0
(" mon) (€13

involves only solving linear equations. One finds that the corresponding linear sys-
tem is overdetermined and has no solution for the above example. Hence, there is
no reduction to second order such that the following expression is conserved

aku
ik
0 0 Okd
/d293 (@U,aidjaaw’w)( 0 Hz‘jkl) a];vl (C.14)
w

This differs from the case of reductions of second order systems to first order sys-
tems. There every second order energy is also the energy of a certain first order
reduction.

Appendix D. Auxiliary constraint evolution for direct first order
reductions

In section 6.1 we introduced a direct reduction of FTINS systems to first order. The
calculations to derive the auxiliary constraint evolution system for this reduction
are shown here.

Evolution of the c/: We start with the constraints that allow one to change the
derivative order of the equation. For y =0,...,N—-3andv=1,..., N — u—2 one
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finds
at(cﬁ)i:8t3(l1(dﬁ 1)12 ) T 6t(d5)i1-u’iu (Dla’)
ptl '
= Z(Aua)l[a(h (dz+ufo')i2--.iy)l' - (dZJeraJrl)ilmiui}
o=0
w p—o+l
+Z Z (BMPU> [a( (dz+u o— p)lz l,) (dZ+V o— p+1) iui}
o=0 p=1
+8l1( v— 1)12 dy) T (C#)leu
ptl
= Z ,quu cr+1) Sl g + (EZ+V70')('L'1-~~7;1/)1]

w o p—o+l ‘
+Z Z (BMPU)l[(C;‘H»VfprJrl)’ilmiui

o=0 p=1
+ (EZ-&-U—U—p)(iluiu)Z] + 8(11 (05—1)i2~~~iu) - (Cg)iln-iu?

where for v = 1 we identified C} := C* and dff = v*. The source terms containing s*
obviously cancel. Next we do the same calculation for p = 0,...,N —2 and v =
N — p — 1. The main difference is that the terms which contain A*, include a
derivative which is expressed differently in terms of the constraints. One finds

at(c’;[jhl). _ata(“( N—p— 2)12 AN 1)~ at(du)il»--izv_#_1 (D].b)
min(pu+1,N—2)
= Z (Auo)l[a(il(d Vio.in w—1) 6(11( )12~~»iN—;L—11)]
o=0
nw p—o+l
+Z Z a(zl(dN o—p— 1)22 AN—p—1)] ( (]T\/vfafp)iluiN—u—ll‘]
o=0 p=1
+ 8(il (Cﬁf—u—Q)izmiz\uufﬂ - (letl—u—l)h-uizvfuq
min(pu+1,N—2) '
= Z (AH ) (CN o— 1)(11 AN—p—1)J
o=0
p p—o+l

+Z Z CN o— p) 72N7,¢71l'+ (6(17\/'—0—/)—1)(i1--<iN7u71)1]

o=0 p=1
+a(11(CN — 2)12 AN—p—1) (foﬁufl)ilu-iz\riuflv

where for ;1 = N — 2 the terms containing v’V 1

cancel and we identify C)' 2 :=
CN=2 and d)) 72 = vN -2,

Evolution of the ¢%: Now we show the analogous statement for the ¢&. To make
the resulting expressions shorter we use the following notation for the non symmetric
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part of a tensor X

Xy fioigyoin = Xiv gy = Xiy o (ioig)onin, = WY (X iy igin)-
Loyl
(D.2)
Furthermore we use the following notation for derivatives of the constraints
(3%5)1&...@“ = ah s 82')\ (C#)i,\+1---iu+w
A =i P
(a Cf/)i1~~iy+x+1 = ail . OZA (CI )7:)\+1'~~i1/+)\+1' (D3)

Again we start with the cases where p=0,...,N—-3andv=0,...,N —pu—2
and find

0¢(e))i = 04043, (d) )iy 11} (D.4a)
p+1
:8{21(0 ia zy+1}+ZA“ 8{21 ;,L+l/70'+1)i2~~i1/+1}l
n p—o+l
+Z Z PU 8{11(dz+u—a—p+1)i2.“i;/+1}l
o=0 p=1
= a{11 (Cﬁ)i2-««iv+l}
p+l pt+rv—o
A
_Z Z AH a e z+u o— )\+1){i1---iu+l}i
o=0 A=0

p+1ptrv—o—1

72 Z 3>‘+1 Cutv—o— M. dyg1}g

Iz u—0+1u+v—0—p
_ E § § H A+l o .
(B po ) (3 Cotv—o—p— A+1){21 dyt1}]
o=0 p=1 A=0
n p—o+1lputv—o—p—1

72 Z Z (B" po)* (8)\+1 Cutv—o—p— M. dyg1}y

o=0 p=1

There we used (6.8) to express the reduction variables in terms of constraints and
spatial derivatives of the v*. Since we consider only the non symmetric part of the
expression the terms which contain v* cancel and one finds the equation above.
Finally, the case py =0,...,N —2 and v = N — u— 1 is shown analogously. The
only difference is that the right hand side contains terms with derivatives of higher
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order acting on the reduction variables:

()i = 010, (d")iy . in_ 1y (D.4b)
min(p+1,N—2) ‘
= 04 (CN_pm1)izein i} + usym > (A%0)10:,00,(d)i.in i)
1IN —p o=0
p—o+1
+Z Z pa a{zl(dN o— p) AN—u}d
o=0 p=1

_8{21(CN n— 1)22 AN—p}
min(u+1,N—2) N—g—2

— usym Z Z (A*5) 8)‘”01\1 o—A— 1)11(12 AN—pg)

i1 AN —p

p+1 N—o—3
A+2
_ uSym <Z Z AN’ 8 + CN o—A— 2)11(12 1Nuj)>
i1

“IN-u \g=0 A=0
n p—o+1 (N—U—p—l

—Z Z (B Z (8>\+1CN o—p— )\){741 AN—p}i

o=0 p=1 A=0

N—o—p—2
+ Z (aAJrlcN o—p—A— 1){7/1 ZNu}j> :

A=0

Hence, we derived an explicit expression for the constraint evolution system which
shows that this system is closed.
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