
Journal of Hyperbolic Differential Equations
c© World Scientific Publishing Company

HYPERBOLICITY OF HIGH ORDER SYSTEMS OF EVOLUTION

EQUATIONS

DAVID HILDITCH

Theoretical Physics Institute, University of Jena,

07743 Jena, Germany
david.hilditch@uni-jena.de

RONNY RICHTER

Mathematisches Institut, Universiät Tübingen,
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Abstract. We study properties of evolution equations which are first order in time

and arbitrary order in space (FTNS). Following Gundlach and Mart́ın-Garćıa (2006)

we define strong and symmetric hyperbolicity for FTNS systems and examine the rela-
tionship between these definitions, and the analogous concepts for first order systems.

We demonstrate equivalence of the FTNS definition of strong hyperbolicity with the

existence of a strongly hyperbolic first order reduction. We also demonstrate equivalence
of the FTNS definition, up to N = 4, of symmetric hyperbolicity with the existence of a

symmetric hyperbolic first order reduction.
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1. Introduction

Systems of partial differential equations admitting wave-like solutions are ubiqui-

tous in both physics and applied mathematics. It is known that by restricting to

the special case with at most first order derivatives the initial value problem of

such systems can be classified algebraically with respect to its well-posedness. The

crucial step in this classification is to check for strong hyperbolicity by analyzing

the principal part, i.e. the derivative terms, of the evolution system [14,18].

The theory used to demonstrate this relies on pseudo-differential calculus [26].

By performing a pseudo-differential reduction to first order the basic method can

also be applied to evolution systems with higher order derivatives, see for exam-

ple [23,11].

For the initial boundary value problem the theory is not so complete. The sim-

plest approach for first order systems is to check for a stronger condition, called
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symmetric hyperbolicity. With carefully chosen boundary conditions it can be used

to identify a well-posed initial boundary value problem [14,18]. If the evolution sys-

tem is not symmetric hyperbolic there is still hope to demonstrate well-posedness,

e.g. by employing the Laplace-Fourier method [17,2,22,25], which unfortunately

does not apply to arbitrary strongly hyperbolic evolution systems.

We study strong and symmetric hyperbolicity for a special class of higher order

evolution equations. Hyperbolicity of higher order systems was studied before in a

different context, see e.g. [3,27,7]. The equations of interest here are linear constant

coefficient, first order in time and arbitrary order in space (FTNS). They admit a

reduction to first order for which standard definitions of hyperbolicity are applicable.

Reductions to first order are obtained by introducing new variables for all but

the highest order derivatives [8], which is a common approach in numerical relativ-

ity [15,24,4,20]. In this way the known, first order definitions of hyperbolicity can

be applied, and powerful numerical methods are available in the construction of

approximate solutions [14,18,13].

However, making the first order reduction raises questions, e.g. about the num-

ber of constraints to impose and the size of the approximation error [19,6]. For

practical applications it also incurs a cost. The memory footprint of any numerical

approximation method increases hugely due to the auxiliary variables.

The question we address here is whether or not we can characterize hyperbolic-

ity of FTNS systems without making a differential or pseudo-differential reduction

to first order. The idea is to establish when “good” reductions of either type can

be made. For the important case of second order in space systems this question

was already answered satisfactorily in the affirmative by Gundlach and Mart́ın-

Garćıa [11], see also [10,9,12] for applications of of these ideas. The present work is

the extension of those calculations to first order in time, higher order in space sys-

tems. The generalization here will be useful in analyzing higher derivative systems.

A more abstract treatment of evolution systems can be found in [5].

We propose definitions of strong and symmetric hyperbolicity for FTNS systems

without reference to any first order system. This enables us to demonstrate equiv-

alence of FTNS strong hyperbolicity with the existence of an iterative first order

reduction, either differential or pseudo-differential, that is strongly hyperbolic in

the sense of first order systems.

We also find that if a higher order system has a symmetric hyperbolic first order

reduction then the equations must satisfy the FTNS definition of symmetric hyper-

bolicity. Conversely, for systems containing up to fourth order spatial derivatives,

we show that the new definition of symmetric hyperbolicity is also sufficient for the

existence of a symmetric hyperbolic first order reduction.

The first order reduction used in this case is a direct, not iterative method, i.e.

it differs from the one applied in the proofs concerning strong hyperbolicity. The

iterative, order-by-order reduction is not appropriate for symmetric hyperbolicity.

We give an explicit example of a third order symmetric hyperbolic evolution problem

without an appropriate second order symmetric hyperbolic reduction, but which
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does have a direct reduction to first order that is symmetric hyperbolic.

The Laplace-Fourier method, which can be used to prove well-posedness of initial

boundary value problems is not considered here. Higher order derivative evolution

systems can be treated by this technique (see for example [16]), because it once

again relies on pseudo-differential calculus.

The paper is structured as follows. In section 2 we review the definitions of strong

and symmetric hyperbolicity for first order in time, second order in space systems.

For pedagogical purposes, in section 3, we explicitly present the special case of the

extension of the theory to first order in time, third order in space systems. Then we

provide a general formulation of first order in time, N -th order in space systems in

section 4. In section 5 we discuss strong hyperbolicity using an iterative reduction

procedure. In section 6 definitions for symmetric hyperbolicity are given for the

higher order system without reduction. The relationship between the definitions is

then investigated using a direct reduction to first order. We conclude in section 7.

Appendix A-Appendix D contain various details that are relegated from the main

body of the text.

2. Basic notions of hyperbolicity

In this article we consider a special class of linear systems of partial differential

equations with constant coefficients. We are mainly interested in questions about

the well-posedness of initial (boundary) value problems.

Well-posedness: An initial (boundary) value problem is called well-posed if there

is a unique solution that depends continuously, in some appropriate norm, on the

choice of initial data.

Second order systems: The class of partial differential equations under consid-

eration is a generalization of the first order in time, second order in space systems

analyzed in [11,10,9]. We start with a short summary of that work. Consider first

order in time, second order in space systems of the form

∂tũ = (Auu)i∂iũ+Auv ṽ + Su, (2.1a)

∂tṽ = (Avu)ij∂i∂j ũ+ (Avv)
i∂iṽ + Sv. (2.1b)

where we have absorbed all non-principal terms into the source functions S. They

have the form

Su = α1ũ+ fu, (2.2a)

Sv = αi2∂iũ+ α3ũ+ α4ṽ + fv, (2.2b)

where fu and fv do not depend on ũ or ṽ and the αi are constant coefficient matrices.



4 D. Hilditch and R. Richter

Principal part: The principal part of the system (2.1) is

∂tũ ' (Auu)i∂iũ+Auv ṽ, (2.3a)

∂tṽ ' (Avu)ij∂i∂j ũ+ (Avv)
i∂iṽ (2.3b)

where ' denotes equality up to non-principal terms. We denote the matrix

Ap2ij =

(
(Auu)jδpi A

u
vδ
p
i

(Avu)pj (Avv)
p

)
(2.4)

the principal matrix of the system (2.1). For a fixed spatial vector si the principal

symbol of the system (2.1) is

P s2 =

(
(Auu)isi Auv

(Avu)ijsisj (Avv)
isi

)
. (2.5)

Note that with

Si :=

(
si 0

0 1

)
(2.6)

one obtains the principal symbol from the principal matrix by the contraction

P s2 = SiAp2i
jSjsp. (2.7)

Furthermore the equations of motion for the variables

ũi :=

(
∂iũ

ṽ

)
(2.8)

are up to non principal terms

∂tũi ' Ap2ij∂pũj . (2.9)

Strong hyperbolicity: Following [11,25,10,9] the system (2.1) is called strongly

hyperbolic if there exist a constant M2 > 0 and a family of hermitian matrices

H2(s) such that

H2(s)P s2 = (P s2 )†H2(s), (2.10a)

M−1
2 I ≤ H2(s) ≤M2 I, (2.10b)

where we used the standard inequality for hermitian matrices

A ≤ B ⇔ v†Av ≤ v†Bv ∀v. (2.11)

It is a necessary and sufficient condition for well-posedness of the initial value prob-

lem. This definition is furthermore equivalent to the existence of a fully first order

reduction of (2.1) which satisfies the standard definition of strong hyperbolicity for

first order systems.

Note that this is not quite equivalent to the definition given in [11,10,9], where

it is required that the principal symbol has real eigenvalues and a complete set of

eigenvectors that depend continuously on s.
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What can be shown [25,18] is that (2.10) is equivalent to the existence of a

constant K2 > 0 and a family of matrices T2(s) such that

T2(s)−1P s2T2(s) = Λ(s), K−1
2 ≤ ‖T2(s)‖ ≤ K2, (2.12)

with a real, diagonal matrix Λ(s) and the standard spectral norm ‖ · ‖.
In view of example 12 in [25], the continuity of T2(s) required in [11,10,9] is

sufficient to guarantee the existence of K2, but not necessary. Fortunately despite

the continuity condition being slightly too restrictive, the construction of first or-

der reductions with the approach of [11] is unaltered if we instead require (2.12).

Our treatment of strong hyperbolicity for FTNS systems is therefore the natural

generalization of [11].

Symmetric hyperbolicity: For the analysis of the initial boundary value prob-

lem the stronger notion of symmetric hyperbolicity is desirable. It guarantees the

existence of a conserved energy in the principal part and allows the construction of

boundary conditions such that the initial boundary value problem is well posed. A

Hermitian matrix

Hij
2 =

(
Hij

11 H
i
12

H†j12 H22

)
, (2.13)

independent of si, such that the matrix

SiH
ij
2 A

p
2j
kspSk, (2.14)

is Hermitian for every spatial vector si is called a candidate symmetrizer. The sys-

tem (2.1) is called symmetric hyperbolic if there exists a positive definite candidate

symmetrizer. The aforementioned conserved energy is

E =

∫
d3x ε =

∫
d3x ũ†iH

ij
2 ũj . (2.15)

It can be shown that ∂tE ' 0 if (2.14) is Hermitian [11].

3. Third order systems

Before starting with the generalization to arbitrary order we discuss third order sys-

tems here. In [11] Gundlach and Mart́ın-Garćıa give different possible definitions of

hyperbolicity of second order systems. They showed that these definitions are equiv-

alent to the existence of a first order reduction with the same level of hyperbolicity.

We follow a similar approach here.
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3.1. Definition of third order systems

FT3S systems: We consider first order in time, third order in space (FT3S) sys-

tems of the form

∂tu = (Auu)i∂iu+ (Auv)v + (Bu1u)u+ su, (3.1)

∂tv = (Avu)ij∂i∂ju+ (Avv)
i∂iv + (Avw)w + (Bv1u)i∂iu+ (Bv2u)u+ (Bv1v)v + sv,

∂tw = (Awu)ijk∂i∂j∂ku+ (Awv)
ij∂i∂jv + (Aww)i∂iw + (Bw1u)ij∂i∂ju+ (Bw2u)i∂iu

+ (Bw3u)u+ (Bw1v)
i∂iv + (Bw2v)v + (Bw1w)w + sw,

where su, sv and sw are arbitrary source terms that do not depend on u, v or w.

In analogy to the second order case we define the principal part of that system as

∂tu ' (Auu)i∂iu+ (Auv)v, (3.2)

∂tv ' (Avu)ij∂i∂ju+ (Avv)
i∂iv + (Avw)w,

∂tw ' (Awu)ijk∂i∂j∂ku+ (Awv)
ij∂i∂jv + (Aww)i∂iw,

where as before ' denotes equality up to non principal terms. As the principal

matrix of the system (3.1) we define

Ap3klmn =

 δp(kδ
(m
l) (Auu)n) δp(kδ

m
l) (Auv) 0

δpk(Avu)mn δpk(Avv)
m δpk(Avw)

(Awu)pmn (Awv)
pm (Aww)p

 (3.3)

and the principal symbol is

P s3 = SijAp3ij
klSklsp (3.4)

where

Sij =

 sisj 0 0

0 si 0

0 0 1

 . (3.5)

3.2. Reduction to second order

Reduction variables: We are going to define strong hyperbolicity of FT3S sys-

tems by referring to strong hyperbolicity of second order systems. Here we define

what we mean by a reduction of the FT3S system (3.1) to second order. We intro-

duce a vector of reduction variables da. The reduction variables eventually replace

the spatial derivatives of the fields u in the reduced system:

da = ∂au. (3.6)

We use lower case letters from the beginning of the Latin alphabet as derivative

indices without further meaning. In what follows their use simply helps to identify

indices which belong to d which makes it simpler to work with the principal matrix

of the second order reduction.
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Unmodified evolution equations: The aim is now to include the da as inde-

pendent variables in a first order in time second order in space (FT2S) system.

Therefore an evolution equation for these variables is needed which must be consis-

tent with (3.6). One gets this equation e.g. by taking the spatial derivative of the

evolution equation for u:

∂tda = (Auu)j∂adj + (Auv)∂av + (Bu1u)∂au+ ∂as
u. (3.7)

In this equation ∂as
u does not depend on the variables u, v, w or da and hence can

be considered as a given source function.

Auxiliary constraints: Obviously the system composed of (3.1) and (3.7) is not

second order. However, one can get rid of the higher order terms by adding linear

combinations of the following functions and their derivatives to the right hand sides

ca := ∂au− da, cia :=
1

2
(∂ida − ∂adi) ,

cija := ∂i∂jda − ∂(i∂jda). (3.8)

These functions vanish when equation (3.6) is satisfied. We will show that their evo-

lution system is closed for the FT2S systems that we consider here. The functions c

are denoted auxiliary constraints. Furthermore the cija can be written as a linear

combination of derivatives of the cia:

cija = 2/3∂icja + 2/3∂jcia. (3.9)

Therefore their addition to the right hand sides is already covered by the addition

of derivatives of the cia. We do not consider the cija separately.

Reduced system: FT2S systems which are obtained in that way have the form

∂tu = (Auu)i∂iu+ (Auv)v + (Bu1u)u+ su + (Du)aca + (D̄u)iacia

∂tda = (Bu1u)∂au+ (Auu)b∂adb + (Auv)∂av + ∂as+ (D)a
bcb + (D̄)a

kbckb,

∂tv = (Bv1u)i∂iu+ (Avu)ia∂ida + (Avv)
i∂iv + (Avw)w + (Bv2u)u+ (Bv1v)v + sv

+ (Dv)aca + (D̄v)iacia,

∂tw = (Bw1u)ij∂i∂ju+ (Awu)ija∂i∂jda + (Awv)
ij∂i∂jv + (Aww)i∂iw + (Bw2u)i∂iu

+ (Bw3u)u+ (Bw1v)
i∂iv + (Bw2v)v + (Bw1w)w + (Dw)ka∂kca

+ (D̄w)kja∂kcja. (3.10)

We denote the constant matrices D and D̄ the reduction parameters. Since cjb is

antisymmetric we can assume without loss of generality

(D̄u)ia = −(D̄u)ai, D̄a
kb = −D̄a

bk, (3.11a)

(D̄v)ia = −(D̄v)ai, (D̄w)kja = −(D̄w)kaj . (3.11b)

Definition 1. We call a first order in time, second order in space system of the

form (3.10) an FT2S reduction of the first order in time, third order in space

system (3.1).
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This definition of a reduction to second order is quite restrictive, one may think

of other definitions that are satisfied by more second order systems. Indeed one

finds that it is too restrictive to be used in a definition of symmetric hyperbolicity

for FT3S systems. This topic is discussed in Appendix C.

Auxiliary constraint evolution: For every FT2S reduction of (3.1), provided

that the reduction constraints are satisfied, one can show that there is a relationship

between solutions of the two systems.

Lemma 1. If the system (3.10) is an FT2S reduction of (3.1) and (u, da, v, w) is

a solution of (3.10) with vanishing auxiliary constraints (3.8) then (u, v, w) is a

solution of the FT3S system (3.1). Moreover, if (u, v, w) is a solution of the FT3S

system (3.1) and the system (3.10) is an FT2S reduction of (3.1) then (u, ∂au, v, w)

is a solution of the FT2S system (3.10) with vanishing auxiliary constraints (3.8).

Proof. By inserting the subset (u, v, w) of the FT2S solution into the FT3S sys-

tem one can easily check that these functions satisfy (3.1), because the auxiliary

constraints (3.8) vanish by assumption. Moreover, if (u, v, w) is a solution of (3.1)

then one can insert (u, ∂au, v, w) into the system (3.10) to see that it is a solution.

The reason for this being that the auxiliary constraint evolution system is closed:

∂tca = ∂tda − ∂a∂tu
= (Auu)b∂acb +

(
(D)a

b − (Du)b∂a
)
cb +

(
(D̄)a

kb − (D̄u)kb∂a
)
ckb, (3.12a)

∂tcia = ∂i∂tda − ∂a∂tdi
= (D)a

b∂icb + (D̄)a
kb∂ickb − (D)i

b∂acb − (D̄)i
kb∂ackb,

∂tcija = 2/3∂j∂tcia + 2/3∂a∂tcij . (3.12b)

It is straightforward to check that (u, ∂au, v, w) solves (3.8).

Principal part of the FT2S reduction: According to the definitions given in

section 2 the principal part of the FT2S reduction (3.10) is

∂tu ' (Auu)i∂iu+ (Du)a∂au+ (D̄u)ia∂ida,

∂tda ' (Bu1u)∂au+ (D)a
b∂bu+ (Auu)b∂adb + (D̄)a

kb∂kdb + (Auv)∂av,

∂tv ' (Bv1u)i∂iu+ (Dv)a∂au+ (Avu)ia∂ida + (D̄v)ia∂ida + (Avv)
i∂iv + (Avw)w,

∂tw ' (Bw1u)ij∂i∂ju+ (Dw)ka∂k∂au+ (Awu)ija∂i∂jda + (D̄w)kja∂k∂jda

+ (Awv)
ij∂i∂jv + (Aww)i∂iw (3.13)

and the principal matrix is

Ap2ijab =


δpi
(
(Auu)j + (Du)j

)
δpi (D̄u)jb 0 0

δpi
(
(Bu1u)δja + (D)a

j
)
δpi
(
(Auu)bδja + (D̄)a

jb
)

(Auv)δ
p
i δ
j
a 0

δpi
(
(Bv1u)j + (Dv)j

)
δpi
(
(Avu)jb + (D̄v)jb

)
δpi (Avv)

j δpi (Avw)

(Bw1u)pj + (Dw)pj (Awu)pjb + (D̄w)pjb (Awv)
pj (Aww)p

 .

(3.14)
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3.3. Strong hyperbolicity

Definitions of strong hyperbolicity: We show that the following definitions of

third order strong hyperbolicity are equivalent

Definition 2a. The FT3S system (3.1) is called FT2S strongly hyperbolic if there

exists an FT2S reduction (3.10) which is strongly hyperbolic in the sense described

in section 2.

Definition 2b. The FT3S system (3.1) is called FT3S strongly hyperbolic if there

exist a constant M3 > 0 and a family of hermitian matrices H3(s) such that

H3(s)P s3 = (P s3 )†H3(s), M−1
3 I ≤ H3(s) ≤M3 I, (3.15)

where the matrix inequality is understood in the standard sense (2.11).

With this one can apply an iterative procedure which reduces strong hyper-

bolicity of FT3S systems to strong hyperbolicity of fully first order systems. First

one reduces the FT3S system to second order and after that the resulting FT2S

system to a fully first order system by applying the work of Gundlach and Mart́ın-

Garćıa [11], FT3S → FT2S → FT1S.

A third possible definition of strong hyperbolicity employs a pseudo-differential

reduction. One finds that this definition is very similar to our definition 2b. We

discuss the topic in Appendix A for systems or arbitrary order.

FT2S strong hyperbolicity⇒ FT3S strong hyperbolicity: In the proof that

definition 2a implies 2b we start with a 2+1 decomposition of the reduction variable

da. With the orthogonal projector, qAa , of the given vector s we decompose da =

qBa dB + sads, where dBs
B = 0. Partitioning the state vector as (u, dA, ds, v, w) the

FT2S principal symbol P s2A
B is

P s2A
B =

(
X̃A

B 0

Ỹ B P s3

)
, (3.16)

where

X̃A
B =

((
(Auu)j + (Du)j

)
sj (D̄u)jbsjq

B
b

(D)a
jqaAsj (D̄)a

jbqaAsjq
B
b

)
(3.17)

and

Ỹ B =

 (Bu1u) + (D)a
jsasj

(
(Auu)b + (D̄)a

jbsasj
)
qBb(

(Bv1u)j + (Dv)j
)
sj

(
(Avu)jb + (D̄v)jb

)
sjq

B
b(

(Bw1u)pj + (Dw)pj
)
spsj

(
(Awu)pjb + (D̄w)pjb

)
spsjq

B
b

 . (3.18)

There we used that the D̄ are antisymmetric in the last two indices. That is, if one

contracts both indices with s then the result vanishes.
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The assumption that (3.1) is FT2S strongly hyperbolic means that there exist

a constant M2 and a family of matrices H2(s)AB such that

H2(s)ABP s2B
C = (P s2B

A)†H2(s)BC , (3.19a)

M−1
2 IAB ≤ H2(s)AB ≤M2 I

AB , (3.19b)

where IAB is the appropriate identity matrix.

We decompose H2(s)AB in a way compatible to the decomposition in (3.16):

H2(s)AB =

(
H11(s)AB H12(s)A

H12(s)† B H22(s)

)
, (3.20)

and find

H2(s)ABP s2B
C =

(
H11(s)ABX̃B

C +H12(s)AỸ C H12(s)AP s3
H12(s)† BX̃B

C +H22(s)Ỹ C H22(s)P s3

)
. (3.21)

Looking at the lower right block of this expression equation (3.19a) implies

H22(s)P s3 = (P s3 )†H22(s). (3.22)

Furthermore we have obviously H22(s) = H22(s)† and

M−1
2 v†v ≤ v†H22(s)v =

(
0, v†

)
H2(s)AB

(
0, v†

)† ≤M2v
†v ∀v, (3.23)

because (3.19b) is satisfied by assumption.

Hence, the matrix H3(s) := H22(s) satisfies (3.15) and FT3S strong hyperbol-

icity of (3.1) is shown.

FT3S strong hyperbolicity ⇒ FT2S strong hyperbolicity: For the reverse

direction we need to choose the reduction parameters appropriately. One can check

easily that the first row and column of (3.16) vanish with the choice

(Du)j = −(Auu)j , (D)a
j = −(Bu1u)δja, (Dv)j = −(Bv1u)j , (3.24a)

(Dw)pj = −(Bw1u)pj , (D̄u)jb = 0. (3.24b)

We call (3.24) the partial choice of reduction parameters. Under the partial

choice P s2A
B has the following lower block triangular form,

P s2A
B =

0 0 0

0 XB
A 0

0 Y B P s3

 , (3.25)

where

XB
A = (D̄)a

jbqaAsjq
B
b , (3.26a)

Y B =


(
(Auu)b + (D̄)a

jbsasj
)
qBb(

(Avu)jb + (D̄v)jb
)
sjq

B
b(

(Awu)pjb + (D̄w)pjb
)
spsjq

B
b

 . (3.26b)
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As mentioned in section 2, definition 2a is equivalent to the existance of a con-

stant K2 and a family of matrices T2(s)A
B with

K−1
2 ≤ ‖T2(s)A

B‖ ≤ K2 (3.27)

such that T2(s)−1
A
BP s2B

C T2(s)C
D is real and diagonal. Here we show this property

instead of the original definition.

Following [11] we choose the reduction parameters such that XB
A is diagonaliz-

able:

(D̄)a
jb = iλεa

jb (3.28)

with λ ∈ R and εa
jb the Levi-Civita symbol. The eigenvalues of XB

A become ±λ.

They are independent of s and the eigenvalues of P s2A
B are the union of the eigen-

values of P s3 and ±λ.

Using that P s3 is bounded, because it is a sum of products of bounded matrices:

‖P s3 ‖ = ‖SijApijklSklsp‖ ≤ ‖Sij‖ ‖Apijkl‖ ‖Skl‖ ‖sp‖, (3.29)

we choose λ larger than all eigenvalues of P s3 . Together with the assumption that

(3.1) is FT3S strongly hyperbolic, i.e. that P s3 is diagonalizable, this choice of λ

makes P s2A
B diagonalizable as well.

The corresponding similarity transformation can be constructed from the eigen-

vectors of P s2A
B . One finds that given an eigenvector, v, of P s3 with eigenvalue α

and an eigenvector, wB , of XB
A then

P s2A
B

(
0

v

)
= α

(
0

v

)
, P s2A

B

(
wB
w

)
= λ

(
wB
w

)
,

where we used w := (λ − P s3 )−1Y BwB , which exists, because λ does not coincide

with an eigenvalue of P s3 .

Now, a matrix which makes T2(s)−1
A
BP s2B

CT2(s)C
D diagonal (and real) is

T2(s)A
B =

(
WA

B 0

(λ− P s3 )−1Y AWA
B T3(s)

)
, (3.30)

where T3(s) and WA
B diagonalize P s3 and XA

B respectively. The inverse of T2(s)A
B

is

T2(s)−1
A
B =

(
W−1

A
B 0

−T3(s)−1(λ− P s3 )−1Y B T3(s)−1

)
.

Both, T2(s)A
B and its inverse are bounded, because on the one hand T3(s) and

T3(s)−1 are bounded by the assumption (3.15) and we have chosen λ such that

(λ− P s3 )−1 is bounded as well.

Hence, we get that there exists a constant K2 > 0 such that

K−1
2 ≤ ‖T2(s)A

B‖ ≤ K2, (3.31)

which shows that FT3S strong hyperbolicity implies FT2S strong hyperbolicity.�
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3.4. Why two different reductions?

Failure of the iterative procedure for symmetric hyperbolicity: Symmet-

ric hyperbolicity relies fundamentally on conserved quantities (we will discuss the

details of FT3S conservation equations in section 3.6). Hence, in order to deal with

symmetric hyperbolicity for the second order reductions, which were used to handle

strong hyperbolicity, we need to construct a reduction with a conserved quantity

that is associated to the given FT3S symmetrizer. However, one finds that there are

FT3S systems with a conserved energy for which no FT2S reduction with the same

conserved quantity exists. We give such a counterexample in C.2 and the reason

why an FT3S conserved quantity does not allow the construction of a conserved

quantity for an FT2S reduction is discussed in Appendix C.

Discussion: This situation differs from the case of reductions of FT2S systems

to first order. There every FT2S symmetrizer implies an FT1S conserved energy.

In [11] this was the basis of the proof that for every symmetric hyperbolic FT2S

system there exists a symmetric hyperbolic first order reduction. Thus, we cannot

use the iterative procedure to prove existence of symmetric hyperbolic lower order

reductions. In order to avoid this problem we employ a direct reduction to first

order (described in section 3.5) and construct a conserved quantity for the first

order system.

Why not always use the direct reduction? Conversely, one may also think of

using the direct first order reduction to show statements about strong hyperbolic-

ity. There the problem is that the proofs rely on the choice of reduction parame-

ters (3.28). For direct first order reductions the structure of reduction parameters

changes completely, and we did not find a choice that shows existence of a strongly

hyperbolic direct first order reduction. So we use one class of reductions for proofs

about strong hyperbolicity, namely reductions from FT3S to FT2S, and another

class for proofs on symmetric hyperbolicity, namely reductions from FT3S to FT1S.

3.5. Direct reduction to first order

Reduction variables: In analogy to the construction of FT2S reductions of the

FT3S system (3.1) we now define direct first order reductions of (3.1). We also use

the terminology direct FT1S reduction. We define reduction variables

dui = ∂iu, duij = ∂(id
u
j), dvi = ∂iv. (3.32)

The equations of motion which one derives from these definitions are

∂td
u
i = (Auu)j∂i∂ju+ (Auv)∂iv + (Bu1u)∂iu+ ∂is

u, (3.33a)

∂td
u
ij = (Auu)k∂i∂j∂ku+ (Auv)∂i∂jv + (Bu1u)∂i∂ju+ ∂i∂js

u, (3.33b)

∂td
v
i = (Avu)jk∂i∂j∂ku+ (Avv)

j∂i∂jv + (Avw)∂iw + (Bv1u)j∂i∂ju+ (Bv2u)∂iu

+ (Bv1v)∂iv + ∂is
v. (3.33c)
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Auxiliary constraints: They are subject to the first order auxiliary constraints

cui = ∂iu− dui , c̄uij = ∂id
u
j − ∂(id

u
j), cuij = ∂(id

u
j) − d

u
ij ,

c̄uijk = ∂id
u
jk − ∂(id

u
jk), cvi = ∂iv − dvi , c̄vij = ∂id

v
j − ∂(id

v
j). (3.34)

We call a first order system which is composed of equations (3.1) and (3.33) with

additions of linear combinations of the auxiliary constraints (3.34) and their deriva-

tives to the right hand sides a direct first order reduction of the FT3S system (3.1).

Reduction: Note that we allow additions of derivatives of the auxiliary constraints,

but it is not possible to add arbitrary derivatives, because the final system must

be first order. The constraint additions are used to cancel the higher order terms

in (3.1) and (3.33).

As in section 3.2 one can show that there is a one-to-one relation between solu-

tions of (3.1) and the solutions of first order reductions which satisfy the auxiliary

constraints. The reason is again that the auxiliary constraint evolution system in

the first order reduction is closed. We show this step for arbitrary spatial derivative

order in section 6.1 and Appendix D.

The principal part of a first order reduction of (3.1) has the form

∂tu ' (Du
u)kcuk + (Du

u)klcukl + (Du
v)
kcvk + (D̄u

u)klc̄ukl + (D̄u
u)klmc̄uklm

+ (D̄u
v)
klc̄vkl, (3.35a)

∂td
u
i ' (Du

u)i
kcuk + (Du

u)i
klcukl + (Du

v)i
kcvk + (D̄u

u)i
klc̄ukl + (D̄u

u)i
klmc̄uklm

+ (D̄u
v)i

klc̄vkl, (3.35b)

∂tv ' (Dv
u)kcuk + (Dv

u)klcukl + (Dv
v)
kcvk + (D̄v

u)klc̄ukl + (D̄v
u)klmc̄uklm

+ (D̄v
v)
klc̄vkl, (3.35c)

∂td
u
ij ' (Auu)k∂(id

u
j)k + (Auv)∂(id

v
j) + (Du

u)ij
kcuk + (Du

u)ij
klcukl + (Du

v)ij
kcvk

+ (D̄u
u)ij

klc̄ukl + (D̄u
u)ij

klmc̄uklm + (D̄u
v)ij

klc̄vkl, (3.35d)

∂td
v
i ' (Avu)jk∂id

u
jk + (Avv)

j∂id
v
j + (Avw)∂iw + (Dv

u)i
kcuk + (Dv

u)i
klcukl

+ (Dv
v)i

kcvk + (D̄v
u)i

klc̄ukl + (D̄v
u)i

klmc̄uklm + (D̄v
v)i

klc̄vkl, (3.35e)

∂tw ' (Awu)ijk∂id
u
jk + (Awv)

ij∂id
v
j + (Aww)i∂iw + (Dw

u)kcuk + (Dw
u)klcukl

+ (Dw
v)
kcvk + (D̄w

u)klc̄ukl + (D̄w
u)klmc̄uklm + (D̄w

v)
klc̄vkl, (3.35f)

where the constant matrices (DX
Y ) and (D̄X

Y ) (X,Y = u, v, w) are the reduction

parameters.

Since the reduction parameters are contracted with auxiliary constraints and the

symmetric part of the c̄ vanishes we assume without loss of generality that the D̄

symmetrized in the upper indices vanish:

(D̄X
Y )(kl) = 0, (D̄X

Y )(klm) = 0, (D̄X
Y )i

(kl) = 0,

(D̄X
Y )i

(klm) = 0, (D̄X
Y )ij

(kl) = 0, (D̄X
Y )ij

(klm) = 0. (3.36)
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Moreover, since duij = du(ij) the reduction variables satisfy

(Du
u)kl = (Du

u)(kl), (Du
u)i

kl = (Du
u)i

(kl), (Dv
u)kl = (Dv

u)(kl),

(Dv
u)i

kl = (Dv
u)i

(kl), (Dw
u)kl = (Dw

u)(kl), (D̄u
u)klm = (D̄u

u)k(lm),

(D̄u
u)i

klm = (D̄u
u)i

k(lm), (D̄v
u)klm = (D̄v

u)k(lm), (D̄v
u)i

klm = (D̄v
u)i

k(lm),

(D̄w
u)klm = (D̄w

u)k(lm), (D̄u
u)ij

klm = (D̄u
u)(ij)

k(lm), (D̄u
u)ij

kl = (D̄u
u)(ij)

kl,

(Du
u)ij

kl = (Du
u)(ij)

(kl), (Du
u)ij

k = (Du
u)(ij)

k,

(Du
v)ij

k = (Du
v)(ij)

k. (3.37)

In a representation with the state vector(
u, dui , v, d

u
ij , d

v
i , w

)
(3.38)

the principal matrix of the system (3.35) is

Ap1ijkl = (3.39)

(Du
u)p (D̃u

u)pk (Du
v)
p (D̄u

u)pkl (D̄u
v)
pk 0

(Du
u)i

p (D̃u
u)i

pk (Du
v)i

p (D̄u
u)i

pkl (D̄u
v)i

pk 0

(Dv
u)p (D̃v

u)pk (Dv
v)
p (D̄v

u)pkl (D̄v
v)
pk 0

(Du
u)ij

p (D̃u
u)ij

pk (Du
v)ij

p (Auu)(kδ
l)
(iδ

p
j) + (D̄u

u)ij
pkl Auvδ

p
(iδ

k
j) + (D̄u

v)ij
pk 0

(Dv
u)i

p (D̃v
u)i

pk (Dv
v)i

p (Avu)klδpi + (D̄v
u)i

pkl (Avv)
kδpi + (D̄v

v)i
pk (Avw)δpi

(Dw
u)p (D̃w

u)pk (Dw
v)
p (Awu)pkl + (D̄w

u)pkl (Awv)
pk + (D̄w

v)
pk (Aww)p


,

where (D̃X
Y )∗

? := (D̄X
Y )∗

? + (DX
Y )∗

?.

3.6. Symmetric hyperbolicity

Definitions of symmetric hyperbolicity: Now we show that the following def-

initions of third order symmetric hyperbolicity are equivalent

Definition 3a. The FT3S system (3.1) is called first order symmetric hyperbolic

if there exists a first order reduction which is symmetric hyperbolic in the usual

first order sense [14]. That is, there exists a choice of reduction parameters and

a Hermitian matrix Hij kl
1 = H

(ij) (kl)
1 which is positive definite in the space of

symmetric tensors such that

Hij kl
1 Ap1klmn (3.40)

is Hermitian for all p.

The matrix Hij kl
1 is symmetric in (i, j) and (k, l), because we defined the reduc-

tion variable duij symmetric.

Definition 3b. The FT3S system (3.1) is called FT3S symmetric hyperbolic if

there exists a Hermitian matrix Hij kl
3 = H

(ij) (kl)
3 which is positive definite in the

space of symmetric tensors such that

SijH
ij kl
3 Ap3klmnspSmn (3.41)
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is Hermitian for every spatial vector s.

As before we denote a positive definite Hermitian matrix Hij kl
3 = H

(ij) (kl)
3

which makes (3.41) Hermitian a symmetrizer. If Hij kl
3 makes (3.41) Hermitian, but

is not necessarily positive definite then we call it a candidate symmetrizer. It is

straightforward to check that given an FT3S symmetrizer Hij kl
3 the energy

E =

∫
d3x ε =

∫
d3xu†ijH

ij kl
3 uij (3.42)

is conserved up to non principal terms, i.e. ∂tE ' 0.

Def. 3a ⇒ Def. 3b: Given an FT3S system which satisfies definition 3a there

exist, according to the usual definition of symmetric hyperbolicity for first order

systems [14], reduction parameters, D and D̄, and a matrix Hij kl
1 = H

(ij) (kl)
1 such

that the product Hij kl
1 Ap1klmn is Hermitian for every p. Moreover the matrix Hij kl

1

is positive definite in the space of symmetric tensors.

Using the state vector (3.38) both Hij kl
1 and Ap1klmn are decomposed into 6× 6

blocks. By grouping the variables as(
u, dui , v | duij , d

v
i , w

)
(3.43)

we identify four 3× 3 sub matrices in H1 and Ap1, where H1 has the form

Hij kl
1 =

(
Hi k

11 Hi kl
12

Hij k
21 Hij kl

22

)
. (3.44)

We are now interested in the lower right 3× 3 sub matrix of the product of H1

and Ap1. It turns out that this sub matrix contains the FT3S conservation equation,

i.e. the condition that (3.41) is Hermitian.

The lower right block of the product Hij kl
1 Ap1klmn is

Hij k
21

 (D̄u
u)pmn (D̄u

v)
pm 0

(D̄u
u)k

pmn (D̄u
v)k

pm 0

(D̄v
u)pmn (D̄v

v)
pm 0

 (3.45)

+Hij kl
22

 (Auu)(mδ
n)
(k δ

p
l) + (D̄u

u)kl
pmn Auvδ

p
(kδ

m
l) + (D̄u

v)kl
pm 0

(Avu)mnδpk + (D̄v
u)k

pmn (Avv)
mδpk + (D̄v

v)k
pm (Avw)δpk

(Awu)pmn + (D̄w
u)pmn (Awv)

pm + (D̄w
v)
pm (Aww)p

 .

By assumption this matrix is Hermitian, because it is a quadratic subblock on the

diagonal of the Hermitian matrix Hij kl
1 Ap1klmn.

Furthermore, when we contract the index p in (3.45) with an arbitrary spa-

tial vector sp and the full matrix from the left and right with Sij and Smn =

diag(smsn, sm, 1) respectively then the result is still Hermitian, because Sij and

Smn are Hermitian.

Using the fact that the symmetrization of the reduction parameters D̄ in all

upper indices vanishes according to (3.36) it follows that all terms in (3.45) that
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contain reduction parameters vanish after the contractions with sp, Sij and Smn.

The remaining terms are

SijH
ij kl
22

 (Auu)(kδ
l)
(mδ

p
n) A

u
vδ
p
(kδ

m
l) 0

(Avu)mnδpk (Avv)
mδpk (Avw)δpk

(Awu)pmn (Awv)
pm (Aww)p

 spSmn = SijH
ij kl
22 A

p
3kl

mnspSmn.

It is clear that Hij kl
22 = H

(ij) (kl)
22 , and since it is a principal minor of the positive

definite Hij kl
1 it is positive definite as well. With the identification

Hij kl
3 = Hij kl

22 (3.46)

this shows that the FT3S system is symmetric hyperbolic in the sense of definition

3b.

Def. 3b ⇒ Def. 3a: Given a matrix Hij kl
3 = H

(ij) (kl)
3 which satisfies (3.41) we

now construct a symmetric hyperbolic first order reduction of (3.1). At first it is

convenient to make a partial choice of the reduction parameters such that the first

three rows and columns of (3.39) vanish. This is achieved by choosing all reduction

parameters DX
Y = 0 (X,Y = u, v, w) and in addition

(D̄u
u)pk = 0, (D̄u

u)i
pk = 0, (D̄v

u)pk = 0, (D̄u
u)ij

pk = 0,

(D̄v
u)i

pk = 0, (D̄w
u)pk = 0, (D̄u

u)pkl = 0, (D̄u
u)i

pkl = 0,

(D̄v
u)pkl = 0, (D̄u

v)
pk = 0, (D̄u

v)i
pk = 0, (D̄v

v)
pk = 0. (3.47)

The next step is to make the ansatz

Hij kl
1 =

(
Γik 0

0 Hij kl
3

)
=


1 0 0 0

0 γik 0 0

0 0 1 0

0 0 0 Hij kl
3

 , (3.48)

where the 2×2 decomposition here is to be understood in the same sense as in (3.44).

Obviously this matrix is positive definite when Hij kl
3 is. Hence, what needs to be

shown with this ansatz is that the remaining reduction parameters can be chosen

such that (3.40) is Hermitian for all p.

We define

Jp ij mn := Hij kl
3

 (D̄u
u)kl

pmn (D̄u
v)kl

pm 0

(D̄v
u)k

pmn (D̄v
v)k

pm 0

(D̄w
u)pmn (D̄w

v)
pm 0

 (3.49)

and

T p ij nm := Hij kl
3 Ap3klmn. (3.50)

Since the form of Ap1ijkl and Hij kl
1 has been simplified by taking the partial

choice (3.47) and the ansatz (3.48) respectively we only need to show that there
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exist reduction parameters such that the matrix

Jp ij mn + T p ij nm (3.51)

is Hermitian for all p. In this equation T p ij nm is fixed because we assume an FT3S

system with given symmetrizer.

The condition that Hij kl
3 is a candidate symmetrizer is equivalent to

T (p ij nm) = T † (p ij nm), (3.52)

because for all tensors Xp ij kl the equivalence

X(p ij kl) = 0 ⇔ spsisjX
p ij klsksl = 0 ∀s (3.53)

holds.

Now we need to find an appropriate Jp ij nm. In order to be able to solve (3.49)

for the reduction parameters it needs to satisfy certain symmetries:

J (p| ij |kl) = 0, Jp ij kl = Jp (ij) (kl). (3.54)

Note that J (p| ij |kl) = 0 implies that the last column of Jp ij kl vanishes.

One can prove the existence of a Jp ij kl which satisfies (3.54) and makes (3.51)

Hermitian by construction. With the definition

V p ij kl := T p ij kl − T †p kl ij (3.55)

the condition that (3.51) is Hermitian becomes

Jp ij kl − J†p kl ij = −V p ij kl. (3.56)

In appendix Appendix B we show that using the ansatz

Jp ij kl =
∑
π∈S5

xπV
π(p)π(i)π(j)π(k)π(l) (3.57)

the system (3.54),(3.56) becomes a linear system on the xπ, which can be solved if

V (p ij kl) = 0.

The latter condition is satisfied by assumption. Hence, multiplication of the

resulting Jp ij kl from the left by H−1
3 (which exists, because H3 is positive definite)

shows that there exists a first order reduction which is symmetric hyperbolic and

has the symmetrizer (3.48). �

4. Higher order systems

In the following sections we extend the notions of strong and symmetric hyperbol-

icity to a certain type of higher order in space systems. As Gundlach and Mart́ın-

Garćıa in [11] we do not consider the most general first order in time, Nth order

in space system, but rather the subset for which a first order reduction exists. Here

we describe these systems and establish our notation.
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4.1. FTNS systems

Notation: We start by describing the notation that we use to present FTNS sys-

tems efficiently. The equations of motion will be given for fields vµ, where vµ denotes

a vector of fields which can appear at most N −µ times differentiated in the FTNS

system. For reasons that will become clear later we also denote fields with that

property variables with µ implicit derivatives. To denote derivatives acting on vν

we define for µ = 0, . . . , N − 1, ν = 0, . . . , µ and ρ = 1, . . . , µ− ν operators

Âµν := (Aµν)i1...iµ−ν+1∂i1...iµ−ν+1
, (4.1a)

B̂µρ ν := (Bµρ ν)i1...iµ−ν−ρ+1∂i1...iµ−ν−ρ+1 , (4.1b)

with constant matrices (Aµν)i1...iµ−ν+1 and (Bµρ ν)i1...iµ−ν−ρ+1 . Since the number

of “derivative indices” (the indices denoted by lower case Latin letters) in these

matrices is fixed through µ, ν and ρ we also use the abbreviations

(Aµν)i := (Aµν)i1...iµ−ν+1 , (4.2a)

(Aµν)i1...iσj := (Aµν)i1...iσj1...jµ−ν−σ+1 , (4.2b)

(Aµν)i1...iσi := (Aµν)i1...iσiσ+1...iµ−ν+1 , (4.2c)

i.e. an underlined lower case Latin letter means “fill in an appropriate number of

derivative indices”. Analog notations are used for the other objects that appear

here. The fields vµ may also appear undifferentiated, i.e. in the form Aµµ+1v
µ+1 or

Bµ(µ−ν+1) νv
ν . For efficiency we use the same notation in that case:

Âµµ+1v
µ+1 := Aµµ+1v

µ+1 =: (Aµµ+1)i∂iv
µ+1, (4.3a)

B̂µ(µ−ν+1) νv
ν := Bµ(µ−ν+1) νv

ν =: (Bµ(µ−ν+1) ν)i∂iv
ν . (4.3b)

Evolution equations: We define an FTNS system as a system of equations of

the form

∂tv
µ =

µ+1∑
ν=0

Âµνv
ν +

µ∑
ν=0

µ−ν+1∑
ρ=1

B̂µρ νv
ν + sµ (4.4a)

∂tv
N−1 =

N−1∑
ν=0

ÂN−1
νv
ν +

N−1∑
ν=0

N−ν∑
ρ=1

B̂N−1
ρ νv

ν + sN−1, (4.4b)

with µ = 0, . . . , N − 2 and source terms sµ, sN−1 (the source terms do not contain

the vµ). Note that FT2S systems are the first order in time, second order in space

systems treated in [11] and FT1S systems are fully first order systems. If we consider

the equation of motion for vµ in (4.4) then the left hand side, ∂tv
µ, is a first order

derivative and in the right hand side the highest derivative acting on vν has order

µ − ν + 1. If we consider vµ as a variable which contains µ derivatives implicitly

then the counting of derivatives gives at both sides µ+ 1. Therefore it is helpful to

think of the vµ in that way, which explains our terminology.
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Principal part: We will see that one can define strong and symmetric hyper-

bolicity of FTNS systems through the coefficients of the highest order derivatives

in (4.4). Therefore we call

∂tv
µ '

µ+1∑
ν=0

Âµνv
ν , ∂tv

N−1 '
N−1∑
ν=0

ÂN−1
νv
ν , (4.5)

with µ = 0, . . . , N − 2 the principal part of the FTNS system. Furthermore we

denote the matrix

ANpij =
(

(∆N
µν)

p(j)

(i)k (Ãµν)k
)ν=0,...,N−1

µ=0,...,N−1
, (4.6)

with (i) meaning symmetrization and

(Ãµν)i :=

{
(Aµν)i for ν ≤ µ+ 1

0 for ν > µ+ 1 ,
(4.7a)

(∆N
µν)

j

ik :=



δj1i1 . . . δ
jN−µ−1

iN−µ−1
δ
jN−µ
k1

. . . δ
jN−ν
kµ−ν+1

for µ ≤ N − 2, ν ≤ µ
δj1i1 . . . δ

jN−µ−1

iN−µ−1
for µ ≤ N − 2, ν = µ+ 1

δj1k1 . . . δ
jN−ν
kN−ν

for µ = N − 1, ν ≤ N − 1

0 for ν > µ+ 1

(4.7b)

for µ, ν ≤ N − 1 the principal matrix of the FTNS system. In the variables ui =

(∂i1 . . . ∂iN−µ−1
vµ)µ=0,...,N−1 the principal part of the FTNS system can be written

as

∂tui ' ANpij∂puj . (4.8)

Principal symbol: The principal symbol of the FTNS system (4.4) is

P sN = SN iANpijspSNj , (4.9)

where

SNj = diag(sj1 . . . sjN−1
, sj1 . . . sjN−2

, . . . , sj1 , 1). (4.10)

5. Higher order strong hyperbolicity

In this section we consider strong hyperbolicity of FTNS systems. In analogy to

the case of FT3S systems we introduce an iterative reduction procedure, FTNS →
FT(N − 1)S → . . . → FT1S and use this to define strong hyperbolicity for FTNS

systems without referring to the reduction.

5.1. Reduction to order (N − 1)

Reduction variables and auxiliary constraints: We begin with the description

of reductions to order (N − 1). The starting point is the FTNS system (4.4).
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Using the same procedure that was described in detail for FT3S systems in

section 3.2 we construct FT(N − 1)S reductions of (4.4). We define the reduction

variables

di := ∂iv
0 (5.1)

and derive from (4.4a) their equation of motion:

∂tdi = (A0
0)j∂i∂jv

0 +A0
1∂iv

1 + B̂0
10∂iv

0 + ∂is
0. (5.2)

The auxiliary constraints introduced with the new reduction variable are

ci := ∂iv
0 − di, (5.3a)

ci1...iσ := ∂i1 . . . ∂iσ−1diσ − ∂(i1 . . . ∂iσ−1
diσ). (5.3b)

One can show that for σ > 2 the constraints ci1...iσ can be written as linear combi-

nations of derivatives of the cij . The proof can be done through induction with the

induction step

ci1...iσ =
1

σ

σ−1∑
µ=1

∂iµci1...iρ−1iρ−2...iσ +
2

σ(σ − 1)

σ−1∑
ν=1

∂i1 . . . ∂iν−1
∂iν+1

. . . ∂iσciµiσ .

(5.4)

FT(N − 1)S reduction: In analogy to section 3.2 we come to FT(N − 1)S re-

ductions by adding the constraints ci and cij as well as their derivatives to (4.4)

and (5.2). If we restrict to those constraint additions which appear in the resulting

FT(N − 1)S principal part then we get the following class of FT(N − 1)S systems

∂tv
0 = (A0

0)k∂kv
0 + (A0

1)v1 + (B0
10)v0 + s0 + (D0)kck + (D̄0)kjckj , (5.5a)

∂tdi = (A0
0)j∂idj +A0

1∂iv
1 +B0

10∂iv
0 + ∂is

0 + (D)i
kck + (D̄)i

kjckj , (5.5b)

∂tv
µ = (Aµ0)k1...kµ+1∂k1 . . . ∂kµdkµ+1

+

µ+1∑
ν=1

Âµνv
ν +

µ∑
ν=0

µ−ν+1∑
ρ=1

B̂µρνv
ν + sµ

+ (Dµ)k1...kµ∂k1 . . . ∂kµ−1ckµ + (D̄µ)k1...kµ+1∂k1 . . . ∂kµ−1ckµkµ+1 , (5.5c)

∂tv
N−1 = (AN−1

0)k1...kN∂k1 . . . ∂kN−1
dkN + sN−1 +

N−1∑
ν=1

ÂN−1
νv
ν

+

N−1∑
ν=0

N−ν∑
ρ=1

B̂N−1
ρνv

ν + (DN−1)k1...kN−1∂k1 . . . ∂kN−2
ckN−1

,

+ (D̄N−1)k1...kN∂k1 . . . ∂kN−2
ckN−1kN (5.5d)

where µ = 1, . . . , N − 2 and the matrices denoted D and D̄ are the reduction pa-

rameters. Due to the antisymmetry of cij one can assume without loss of generality

that the D̄ are antisymmetric in the last two indices. By applying this reduction

procedure (N − 1) times we finally arrive at an FT1S system.
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Auxiliary constraint evolution: By construction it is clear that there is a one-to-

one correspondence between the solutions of (4.4) and the solutions of (5.5) which

satisfy the auxiliary constraints (5.3). The reason is that the constraint evolution

system is closed:

∂tci =
(
(A0

0)k + (D0)k
)
∂ick +Di

kck + (D̄0)kj∂ickj + D̄i
kjckj , (5.6a)

∂tcij = D[j
k∂i]ck + D̄[j

kl∂i]ckl. (5.6b)

Having (5.4) and (5.6) one can show by induction that ∂tci1...iσ is equal to a linear

combination of the auxiliary constraints (5.3) and their spatial derivatives.

Principal part: The principal part of the FT(N − 1)S system (5.5) is

∂tv
0 '

(
(A0

0)k + (D0)k
)
∂kv

0 + (D̄0)kj∂kdj , (5.7a)

∂tdi '
(
B0

1 0δ
k
i + (D)i

k
)
∂kv

0 +
(
(A0

0)jδki + (D̄)i
kj
)
∂kdj +A0

1∂iv
1, (5.7b)

∂tv
µ '

(
(Bµ1 0)k + (Dµ)k

)
∂k1 . . . ∂kµv

0

+
(
(Aµ0)k + (D̄µ)k

)
∂k1 . . . ∂kµdkµ+1

+

µ+1∑
ν=1

Âµνv
ν , (5.7c)

∂tv
N−1 '

(
(BN−1

1 0)k + (DN−1)k
)
∂k1 . . . ∂kN−1

v0

+
(
(AN−1

0)k + (D̄N−1)k
)
∂k1 . . . ∂kN−1

dkN +

N−1∑
ν=1

ÂN−1
νv
ν , (5.7d)

where µ = 1, . . . , N − 2.

For the ordering of variables (v0, di, v
1, . . . , vN−1) the principal matrix of the

FT(N − 1)S reduction (5.5) becomes

AN−1
p
i
j
i
j = (5.8)

(∆N−1
00 )

pj

ik ((A0
0)k + (D0)k) (∆N−1

00 )
pj

ik (D̄0)kj 0

(∆N−1
00 )

pj

ik ((B0
1 0)δki + (D)i

k) (∆N−1
00 )

pj

ik

(
(A0

0)jδki + (D̄)i
kj
)

(∆̃N−1
0(ν−1))

pj

ik (Ã0
ν)δki

(∆N−1
(µ−1)0)

pj

ik ((Bµ1 0)k + (Dµ)k) (∆N−1
(µ−1)0)

pj

ik

(
(Aµ0)kj + (D̄µ)kj

)
(∆̃N−1

(µ−1)(ν−1))
pj

ik (Ãµν)k

 ,

where µ, ν = 1, . . . , N − 1.

Note that

(∆N−1
00 )

pj

ik (A0
0)jN−1δkiN−1

= (∆N
00)

pj

ik (A0
0)k, (5.9a)

(∆N−1
00 )

pj

ik (A0
1)δkiN−1

= (∆N
01)

pj

i (A0
1), (5.9b)

(∆N−1
(µ−1)0)

pj

ik (Aµ0)kjN−1 = (∆N
µ0)

pj

ik (Aµ0)k, (5.9c)

(∆̃N−1
(µ−1)(ν−1))

k
ij = (∆̃N

µν)
k
ij . (5.9d)

Hence, if we rename i → iN−1 and j → jN−1 and assume vanishing reduction

parameters D̄ then the FT(N−1)S principal matrix has the FTNS principal matrix
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as a submatrix:

AN−1
p
i
j
iN−1

jN−1 =

(
∗ 0

∗ ANpij
)
. (5.10)

The FT(N−1)S principal symbol can be obtained by the appropriate contraction

of the principal matrix with a spatial vector s:

P sN−1i
j =

 ((A0
0)k + (D0)k)sk (D̄0)kjsk 0

((B0
1 0)δki + (D)i

k)sk
(
(A0

0)jδki + (D̄)i
kj
)
sk (Ã0

ν)si
((Bµ1 0)k + (Dµ)k)sµk

(
(Aµ0)kj + (D̄µ)kj

)
sµk (Ãµν)ksµ−ν+1

k

 ,

(5.11)

where sνk = sk1 . . . skν .

5.2. FTNS strong hyperbolicity

Definitions of strong hyperbolicity: Having defined reductions of FTNS sys-

tems to FT(N − 1)S systems we now give two definitions of strong hyperbolicity

for FTNS systems and show their equivalence. The first definition makes use of the

FT(N − 1)S reduction.

Definition 4a. The FTNS system (4.4) is called FT(N−1)S strongly hyperbolic if

there exists an FT(N −1)S reduction (5.5) which is FT(N −1)S strongly hyperbolic

in the sense of definition 4b.

The second definition does not rely on any reduction to lower order systems. Note

that for N = 1 it is consistent with the standard definition of strong hyperbolicity

for fully first order systems [14].

Definition 4b. The FTNS system (4.4) is called FTNS strongly hyperbolic if there

exist a constant MN > 0 and a family of hermitian matrices HN (s) such that

HN (s)P sN = (P sN )†HN (s),

M−1
N I ≤ HN (s) ≤MN I, (5.12)

where the matrix inequality is understood in the standard sense (2.11).

Equivalence of the definitions: We now demonstrate that the two definitions

of strong hyperbolicity are equivalent. There is no major difference to the case of

N = 3 which was discussed in section 3.3.

2+1 decomposition: For the proof we apply a 2+1 decomposition of the re-

duction variable di. Let qAa be the orthogonal projector of s, then the reduction

variable is written as di = qAi dA + sids, where dAs
A = 0. With the state vec-
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tor (v0, dA, ds, v
1, . . . , vN−1) the principal symbol (5.11) becomes

P sN−1A
B = (5.13)

((A0
0)k + (D0)k)sk (D̄0)kjskq

B
j 0 0

(D)i
kskq

i
A (D̄)i

kjskq
B
j q

i
A 0 0

((B0
1 0)δki + (D)i

k)sks
i
(
(A0

0)jδki + (D̄)i
kj
)
skq

B
j s

i (A0
0)jsj Ã0

ν

((Bµ1 0)k + (Dµ)k)sµk
(
(Aµ0)kj + (D̄µ)kj

)
sµkq

B
j (Aµ0)kjsµksj (Ãµν)ksµ−ν+1

k

 .

Definition 4a ⇒ 4b: Assume that definition 4a is satisfied for an FT(N − 1)S

reduction (5.5), i.e. there exist a constant MN−1 > 0 and a family of hermitian

matrices HN−1(s)AB such that

HN−1(s)ABP sN−1B
C = (P sN−1B

A)†HN−1(s)BC , (5.14)

M−1
N−1 I

AB ≤ HN−1(s)AB ≤MN−1 I
AB ,

where IAB is the appropriate identity.

Since (5.13) is a block triangular matrix with the lower right diagonal block(
(A0

0)jsj Ã0
ν

(Aµ0)ksµk (Ãµν)ksµ−ν+1
k

)
= P sN , (5.15)

the same arguments used in section 3.3 can be applied to show that in an appropriate

decomposition of HN−1(s)AB the lower right block is a bounded symmetrizer of P sN .

Hence, definition 4b is satisfied.

Definition 4b⇒ 4a: Conversely, assuming definition 4b is satisfied for an FTNS

system (4.4) one can identify an FT(N−1)S reduction which is strongly hyperbolic.

We make the partial choice of reduction parameters

(D0)k = −(A0
0)k, (D)i

k = −(B0
1 0)δki , (Dµ)k = −(Bµ1 0)k, (5.16)

for µ = 1, . . . , N − 1. With this choice (5.13) has the form

P sN−1A
B =

 0 0 0

0 XB
A 0

0 Y B P sN

 , (5.17)

where XB
A is the same matrix, (3.26a), as in the FT3S case, XB

A = (D̄)i
kjskq

B
j q

i
A,

and

Y B =

((
(A0

0)jδki + (D̄)i
kj
)
skq

B
j s

i(
(Aµ0)kj + (D̄µ)kj

)
sµkq

B
j

)
. (5.18)

The same procedure that we used for FT3S systems in section 3.3 allows the

identification of a strongly hyperbolic FT(N − 1)S reduction. The key in this pro-

cedure is to choose

(D̄)i
kj = iλεi

jk, (5.19)
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where λ ∈ R. With this the eigenvalues of XB
A are ±λ and if λ is sufficiently large

then one can show that definition 4a is satisfied using the assumption that the

properties of the principal symbol in definition 4b hold for P sN . �

6. Higher order symmetric hyperbolicity

In this section we show that one can extend to notion of symmetric hyperbolicity

to higher order in space systems. For reasons discussed in section 3.4 we follow the

strategy to employ a direct reduction to first order.

6.1. Reduction of FTNS systems to first order

Reduction variables: We start with the description of the reduction to first order

for the FTNS system (4.4),

∂tv
µ =

µ+1∑
ν=0

Âµνv
ν +

µ∑
ν=0

µ−ν+1∑
ρ=1

B̂µρ νv
ν + sµ (6.1a)

∂tv
N−1 =

N−1∑
ν=0

ÂN−1
νv
ν +

N−1∑
ν=0

N−ν∑
ρ=1

B̂N−1
ρ νv

ν

+ sN−1, (6.1b)

with µ = 0, . . . , N−2. The reduction variables which we define are denoted dµν . The

two indices have the following meaning:

µ the reduction variable refers to vµ in the original

FTNS system

ν the reduction variable has ν derivative indices

(1 ≤ ν ≤ N − µ− 1)

The reduction variables are defined as

(dµ1 )i = (dµ1 )i := ∂iv
µ, (dµν )i1...iν = (dµν )i := ∂(i1(dµν−1)i2...iν), (6.2)

where µ = 0, . . . , N − 2, ν = 2, . . . , N − µ − 1. For convenience we also use the

notation

(dµ0 ) = (dµ0 )i := vµ. (6.3)

One finds that the important variables for the principal part of the first order

reduction are those with the highest number of derivative indices, i.e. dµN−µ−1. We

abbreviate them as

(dµ)i := (dµN−µ−1)i, (6.4)

where µ = 0, . . . , N − 2.
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Unmodified equations of motion: Using these definitions the equations of mo-

tion for the reduction variables can be derived by taking derivatives of (6.1a). One

finds

∂t(d
µ
ν )i =

µ+1∑
ρ=0

Âµρ ∂i1 . . . ∂iνv
ρ (6.5a)

+

µ∑
ρ=0

µ−ρ+1∑
σ=1

B̂µσ ρ ∂i1 . . . ∂iνv
ρ + ∂i1 . . . ∂iνs

µ,

where µ = 0, . . . , N − 2, ν = 1, . . . , N − µ− 1 and we used

Âµρ ∂i1 . . . ∂iνv
ρ := (Aµρ)

j1...jµ−ρ+1∂i1 . . . ∂iν∂j1 . . . ∂jµ−ρ+1
vρ, (6.6a)

B̂µσ ρ ∂i1 . . . ∂iνv
ρ := (Bµσ ρ)

j1...jµ−ρ−σ+1∂i1 . . . ∂iν∂j1 . . . ∂jµ−ρ−σ+1v
ρ. (6.6b)

The terms ∂i1 . . . ∂iνs
µ in (6.5) do not contain the dµν or vµ and can be seen as given

source terms.

Auxiliary constraints: The reduction variables are subject to the following first

order auxiliary constraints

(cµν )i1...iν = (cµν )i := ∂(i1(dµν−1)i2...iν) − (dµν )i1...iν , (6.7a)

(c̄µν )i1...iν+1 = (c̄µν )i := ∂i1(dµν )i2...iν+1 − ∂(i1(dµν )i2...iν+1), (6.7b)

where µ = 0, . . . , N − 2, ν = 1, . . . , N − µ− 1.

First order reduction: As before we ask now, which first order systems can be

constructed by adding the constraints (6.7) and their derivatives to the right hand

sides of (6.1) and (6.5).

We note that lower order derivatives of the vµ (i.e. derivatives of order N−µ−1

or smaller) can be written as linear combinations of the constraints, their derivatives

and undifferentiated reduction variables. For µ = 0, . . . , N − 2 and ν = 1, . . . , N −
µ− 1 one finds

∂i1 . . . ∂iνv
µ = (dµν )i +

ν−1∑
ρ=0

∂i1 . . . ∂iρ(c
µ
ν−ρ)iρ+1...iν +

ν−2∑
ρ=0

∂i1 . . . ∂iρ(c̄
µ
ν−ρ−1)iρ+1...iν ,

(6.8)

where the sums are understood to vanish when the upper bound is smaller than the

lower bound and the terms with ρ = 0 should be interpreted as the undifferentiated

constraints.

One can prove this by induction over ν. For ν = 1 we get

∂i1v
µ = (cµ1 )i1 + (dµ1 )i1 , (6.9)
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which is of the form (6.8). Assuming that (6.8) holds for a certain ν we get

∂i1 . . . ∂iν+1v
µ = ∂i1(dµν )i2...iν+1 + ∂i1

ν∑
ρ=1

∂i2 . . . ∂iρ(c
µ
ν−ρ+1)iρ+1...iν+1

+ ∂i1

ν−1∑
ρ=1

∂i2 . . . ∂iρ(c̄
µ
ν−ρ)iρ+1...iν+1

. (6.10)

In case ν < N − µ− 1 the first term on the right hand side can be rewritten:

∂i1(dµν )i2...iν+1
= ∂(i1(dµν )i2...iν+1) + (c̄µν )i1...iν+1

= (dµν+1)i + (cµν+1)i + (c̄µν )i. (6.11)

Hence, defining ν̃ = ν + 1 one gets

∂i1 . . . ∂iν̃v
µ = (dµν̃ )i +

ν̃−1∑
ρ=0

∂i1 . . . ∂iρ(c
µ
ν̃−ρ)iρ+1...iν̃ +

ν̃−2∑
ρ=0

∂i1 . . . ∂iρ(c̄
µ
ν̃−ρ−1)iρ+1...iν̃

(6.12)

for µ = 0, . . . , N−2 and ν̃ = 1, . . . , N−µ−1. Likewise one finds for µ = 0, . . . , N−2

and ν = N − µ

∂i1 . . . ∂iN−µv
µ = ∂i1(dµ)i2...iN−µ +

N−µ−1∑
ρ=1

∂i1 . . . ∂iρ(c
µ
N−µ−ρ)iρ+1...iN−µ

+

N−µ−2∑
ρ=1

∂i1 . . . ∂iρ(c̄
µ
N−µ−ρ−1)iρ+1...iN−µ , (6.13)

which is just the derivative of (6.8) with ν = N − µ − 1. This shows that when

deriving a first order reduction all lower order derivatives of the vµ can be com-

pletely absorbed into the constraint additions and that up to constraint additions

the highest order derivative of vµ becomes a first order symmetrized derivative of

dµ.

Reduction parameters: The ambiguity of adding arbitrary linear combinations

of the auxiliary constraints (6.7) to the right hand sides of the first order system is

parametrized by using reduction parameters. We denote the constraint additions as

DX σ
νc
ν
σ := (DX σ

ν)i1...iσ (cνσ)i1...iσ , D̄X σ
ν c̄
ν
σ := (D̄X σ

ν)i1...iσ+1(c̄νσ)i1...iσ+1 ,

(6.14)

where ν = 0, . . . , N − 2 and σ = 1, . . . , N − ν − 1. Depending on the equation

where we add those constraints the index X is either a single index (in the case of

constraint additions to the right hand sides of vµ) or an index-tuple (µ, λ, i1, . . . , iλ)

(in the right hand sides of dµλ). The matrices (DX σ
ν)i1...iσ and (D̄X σ

ν)i1...iσ+1

are the reduction parameters. Without loss of generality we assume the symmetry

properties

(DX σ
ν)i1...iσ = (DX σ

ν)(i1...iσ), (D̄X σ
ν)(i1...iσ+1) = 0,

(D̄X σ
ν)i1i2...iσ+1 = (D̄X σ

ν)i1(i2...iσ+1). (6.15)
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The constraint additions on the different equations are independent of each other.

We use the short notation

CX =

N−2∑
ν=0

N−ν−1∑
σ=1

DX σ
νc
ν
σ +

N−2∑
ν=0

N−ν−1∑
σ=1

D̄X σ
ν c̄
ν
σ, (6.16)

where X has the same meaning as in (6.14).

Reduced equations of motion: With these findings the right hand sides for

the vµ in the first order reductions of (6.1) have the form

∂tv
µ = Cµ + sµ +

µ+1∑
ν=0

(Aµν)j(dνµ−ν+1)j +

µ∑
ν=0

µ−ν+1∑
ρ=1

(Bµρ ν)j(dνµ−ν−ρ+1)j ,

∂tv
N−2 = CN−2 + sN−2 +

N−2∑
ν=0

(AN−2
ν)j(dν)j + (AN−2

N−1)vN−1

+

N−2∑
ν=0

N−ν−1∑
ρ=1

(Bµρ ν)j(dνµ−ν−ρ+1)j ,

∂tv
N−1 =

N−2∑
ν=0

(AN−1
ν)ji∂j(d

ν)i + (AN−1
N−1)j∂jv

N−1 + CN−1 + sN−1, (6.17)

for µ = 0, . . . , N − 3. Likewise one finds the equations of motion for the reduction

variables in the first order reduction

∂t(d
µ
σ)i = (Cµσ )i + ∂σi1...iσs

µ +

µ+1∑
ν=0

(Aµν)j(dνµ+σ−ν+1)i1...iσj

+

µ∑
ν=0

µ−ν+1∑
ρ=1

(Bµρ ν)j(dνµ+σ−ν−ρ+1)i1...iσj , (6.18a)

∂t(d
µ)i =

µ+1∑
ν=0

(Aµν)j(∆N
µν)

pk
ij ∂(p(d

ν)k) + (CµN−µ−1)i + ∂N−µ−1
i1...iN−µ−1

sµ

+

µ∑
ν=0

µ−ν+1∑
ρ=1

(Bµρ ν)j(dνN−ν−ρ)i1...iN−µ−1j , (6.18b)

∂t(d
N−2)i =

N−2∑
ν=0

(AN−2
ν)j∂(i(d

ν)j) +AN−2
N−1∂iv

N−1 + (CN−2
1 )i + ∂is

N−2

+

N−2∑
ν=0

N−ν−1∑
ρ=1

(BN−2
ρ ν)j(dνN−ν−ρ)ij , (6.18c)

where µ = 0, . . . , N−3 and σ = 1, . . . , N−µ−2. The Cµσ can be read off from (6.16),

and in (6.18b) we used the symbol (∆N
µν)

k
ij which is defined in (4.7b). We call a

system of the form (6.17),(6.18) a first order reduction or FT1S reduction of the

FTNS system (6.1).
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Principal part: We now write the principal part of the first order reduc-

tion (6.17),(6.18) in a standard form. The terms that contain derivatives in the

constraint additions are

CX '
N−2∑
ν=0

N−ν−2∑
σ=0

(DX (σ+1)
ν)i1...iσ+1∂i1(dνσ)i2...iσ+1

+

N−2∑
ν=0

N−ν−1∑
σ=1

(D̄X σ
ν)i1...iσ+1∂i1(dνσ)i2...iσ+1

=

N−2∑
ν=0

(DX 1
ν)i1∂i1v

ν +

N−3∑
ν=0

N−ν−2∑
σ=1

(D̃X σ
ν)i1...iσ+1∂i1(dνσ)i2...iσ+1

+

N−2∑
ν=0

(D̄X (N−ν−1)
ν)i1...iN−ν∂i1(dν)i2...iN−ν , (6.19)

where

(D̃X σ
ν)i1...iσ+1 = (D̃X σ

ν)i := (DX (σ+1)
ν)i1...iσ+1 + (D̄X σ

ν)i1...iσ+1 (6.20)

and we used the symmetry properties (6.15) of the reduction parameters. The sym-

bol ' means equality up to terms without derivatives and X has the same meaning

as in (6.14). We write the state vector as

ui :=
(
(dµ̃σ)i, v

µ, (dµ)i, w
)†
, (6.21)

where the bounds for the indices are µ = 0, . . . , N − 2, µ̃ = 0, . . . , N − 3 and σ =

1, . . . , N − µ̃− 2. The principal part of the system (6.17),(6.18) is then

∂tui ' A1
p
i
j∂puj , (6.22)

where

A1
p
i
j = (6.23)
(D̃µ̃

σ
ρ
ν̃)i

pj (Dµ̃
σ

1
ν)i

p (D̄µ̃
σ
N−ν−1

ν)i
pj 0

(D̃µ ρ
ν̃)pj (Dµ 1

ν)p (D̄µ (N−ν−1)
ν)pj 0

(D̃µ
N−µ−1

ρ
ν̃)i

pj (Dµ
N−µ−1

1
ν)i

p (Ãµν)k(∆̃N
µν)

(pj)

ik + (D̄µ
N−µ−1

N−ν−1
ν)i

pj 0

(D̃(N−1) ρ
ν̃)pj (D(N−1) 1

ν)p (ÃN−1
ν)pj + (D̄(N−1) (N−ν−1)

ν)pj (AN−1
N−1)p


and we used definition (4.7) for the symbols Ãµν and ∆̃N

µν . The range of the various

indices in this expression is µ, ν = 0, . . . , N − 2, µ̃, ν̃ = 0, . . . , N − 3, σ = 1, . . . , N −
µ̃− 2 and ρ = 1, . . . , N − ν̃ − 2.

Auxiliary constraint evolution: Having defined what we mean by first order

reductions of the FTNS system (6.1) we note that again there is a one-to-one cor-

respondence between the solutions of the first order reduction (6.17),(6.18) which

satisfy the auxiliary constraints (6.7) and the solutions of the original FTNS sys-

tem (6.1). This property of the reduced systems is a consequence of the construction
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procedure, which leads to a closed constraint evolution system. To see that the con-

straint evolution system is closed is straightforward. One just uses equation (6.8)

to express the reduction variables by derivatives of the vµ and constraints. In the

right hand sides of the constraint evolution system the derivatives of the vµ cancel

due to their symmetry in the derivative indices. This leads to the closed constraint

evolution system. However, one obtains very lengthy expressions, which we present

in appendix Appendix D.

6.2. FTNS symmetric hyperbolicity

Definitions of symmetric hyperbolicity: To get definitions of symmetric hy-

perbolicity for FTNS systems we generalize the second order definitions given in

[11]. We start by defining candidate symmetrizers.

Definition 5a. Given an FTNS system (6.1) we call a Hermitian matrix H
i j

N =

H
(i) (j)

N such that the product matrix

SNi H
i k
N A

p
Nk

jspS
N
j , (6.24)

is Hermitian for every s an FTNS candidate symmetrizer.

When we refer to lower order systems then we require the existence of a first

order reduction such that there is a candidate symmetrizer in the usual first order

sense:

Definition 5b. We call a Hermitian matrix H
i j

1 = H
(i) (j)

1 a first order candidate

symmetrizer of (6.1) if there exists a first order reduction (6.17),(6.18) such that

the product

H
i k
1 A

p
1k
jsp, (6.25)

is Hermitian for every s.

In both cases we call a positive definite candidate symmetrizer a symmetrizer.

With this it is straightforward to define symmetric hyperbolicity with and without

reference to a first order reduction

Definition 6a. The FTNS system (6.1) is called FTNS symmetric hyperbolic if

there exists a positive definite FTNS candidate symmetrizer.

Definition 6b. The FTNS system (6.1) is called first order symmetric hyperbolic

if there exists a positive definite first order candidate symmetrizer.

Relationship between the definitions: Now we show for arbitrary N that defi-

nition 6b implies 6a. The proof of the reverse direction for arbitrary N involves very

complicated expressions. We show in appendix Appendix B that for N = 3 it is

indeed true that 6a implies 6b. For N ≤ 4 we checked this using computer algebra.

However, whether the statement holds for arbitrary N is an open question.
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Construction of Nth order from first order candidates: Let H
i j

1 be the

candidate symmetrizer of a first order reduction with principal matrix Ap1kj . We

group the state vector (6.21) as

ui :=
(
(dµ̃σ)i, v

µ | (dµ)i, w
)†

(6.26)

and in this way decompose H1 and A1 consistently into

H
i j

1 =

(
H
i j

11 H
i j

12

H
i j

21 H
i j

22

)
, Ap1kj =

(
Ap11k

j Ap12k
j

Ap21k
j Ap22k

j

)
, (6.27)

where

Ap12k
j =

(
(D̄µ̃

σ
N−ν−1

ν)i
pj 0

(D̄µ (N−ν−1)
ν)pj 0

)
,

Ap22k
j =

(
(Ãµν)k(∆̃N

µν)
p(j)

(i)k + (D̄µ
N−µ−1

N−ν−1
ν)i

pj 0

(ÃN−1
ν)pj + (D̄(N−1) (N−ν−1)

ν)pj (AN−1
N−1)p

)
, (6.28)

i.e. such that A22 is the lower right 2× 2 block of (6.23). In this decomposition the

lower right block of the product H
i k
1 A

p
1k
j is

H
i k
21A

p
12k

j +H
i k
22A

p
22k

j . (6.29)

Hence, the matrix (6.29) is Hermitian for every p, because it is a principal minor of

H
i k
1 A

p
1k
j .

Moreover, because SNi is Hermitian for every s, we get that (6.29) contracted

from left and right with SNi is Hermitian for every p as well. Thus,

SNi H
i k
21A

p
12k

jspS
N
j + SNi H

i k
22A

p
22k

jspS
N
j (6.30)

is Hermitian for every s. On the other hand

Ap12k
jspS

N
j = 0, Ap22k

jspS
N
j = ApNk

jspS
N
j , (6.31)

because the symmetric part of the reduction parameters contained in A12 and A22

vanishes.

Since H22 is on the diagonal of H1 it is Hermitian as well. Thus, with the

identification

H
i k
N = H

i k
22 (6.32)

there exists an Nth order candidate symmetrizer.

Positivity of the FTNS candidate symmetrizer: Moreover, if H
i j

1 is positive

definite then also H
i k
22 is positive definite, because it is a principal minor. Hence, if

there exists a first order reduction of (6.1) which is symmetric hyperbolic then (6.1)

is also FTNS symmetric hyperbolic with the symmetrizer H
i k
N = H

i k
22 .
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Construction of a symmetric hyperbolic first order reduction: Now, for

the reverse direction we assume a given FTNS symmetrizer, H
i j

N , and would like

to show that there exists a first order reduction with symmetrizer

H
i j

1 =


Γ

(i1...iρ) (j1...jρ)
ρ · · · 0

...
. . .

...

0 · · · 1

0

0 H
i j

N

 . (6.33)

(in the 2× 2 decomposition (6.27)) with

Γi1...iρ j1...jρρ = γi1j1 . . . γiρjρ (6.34)

and ρ such that the Γ
i j
ρ has the appropriate number of indices. Obviously positivity

of H
i j

N implies positivity of H
i j

1 , i.e. we only need to show the conservation property.

To identify an appropriate reduction to first order we first make the partial

choice of reduction parameters

(DX σ
ν)i = 0, (D̄X σ

ν)i = 0, (6.35)

for ν = 0, . . . , N − 3 and σ = 1, . . . , N − ν − 2, i.e. only the reduction parameters

which correspond to the constraint additions with the highest number of derivative

indices remain. As in (6.14) X denotes either a single index µ = 0, . . . , N − 1 or an

index tuple (µ, λ, i1, . . . , iλ) with µ = 0, . . . , N − 2 and λ = 1, . . . , N − µ− 1.

With that choice most of the components of Ap1ij vanish and the statement

which needs to be shown is that there exist reduction parameters such that

H
i j

N Ã
p
Nj

ksp (6.36)

is Hermitian for every s, where

ÃpNj
k = ApNj

k + D̄p
Nj

k (6.37)

and

D̄p
Nj

k =

(
(D̄µ

N−µ−1
N−ν−1

ν)j
pk 0

(D̄(N−1) (N−ν−1)
ν)pk 0

)
. (6.38)

We define (
T p i kµν

)ν=0,...,N−1

µ=0,...,N−1
= T

p i k
N := H

i j

N A
p
Nj

k, (6.39a)(
Jp i kµν

)ν=0,...,N−1

µ=0,...,N−1
= J

p i k
N := H

i j

N D̄
p
Nj

k, (6.39b)

where it is understood that decomposition of TN and JN into Tµν and Jµν is the

one induced by the original FTNS system (6.1).

One finds that the hermiticity of (6.36) is equivalent to

T
p i k
N + J

p i k
N =

(
T
p i k
N + J

p i k
N

)†
∀p. (6.40)



32 D. Hilditch and R. Richter

In components equation (6.40) is

J
p i j
µν + T

p i j
µν = J

†p j i
νµ + T

†p j i
νµ ∀p. (6.41)

From definition (6.39b) we see that the Jµν need to satisfy certain symmetry

conditions:

J
(p| i |j)
µν = 0, J

p i j
µν = J

p (i) (j)
µν (6.42)

for µ = 0, . . . , N − 1, ν = 0, . . . , N − 2. Note that

J
(p| i |j)
µν = 0 ⇒ J

p i
µ(N−1) = 0. (6.43)

Since HN is an FTNS candidate symmetrizer and due to the fact that certain

symmetries hold for HN and AN the Tµν satisfy

T
(p i j)
µν = T

†(p j i)
νµ , T

p i j
µν = T

p (i) (j)
µν (6.44)

for µ, ν = 0, . . . , N − 1.

Now, assuming a given Jµν which satisfies (6.42) we can easily calculate the

reduction variables D̄N by multiplication of JN from the left with H−1
N (which

exists because HN is positive definite by assumption).

Hence, the existence of a first order reduction with candidate symmetrizer H1 is

shown if we prove that there exist Jµν which satisfy (6.41) and (6.42) given (6.44)

holds.

One approach for the proof of this statement is the following. One defines

V
p i j
µν := T

p i j
µν − T

† p j i
νµ , (6.45)

which satisfies

V
† p i j
µν = −V p j iνµ , V

(p j i)
νµ = 0, V

p j i
νµ = V

p (j) (i)
νµ . (6.46)

Then one uses the ansatz

J
p i j
µν =

∑
π∈S(2N−µ−ν−1)

xπV
π(p)π(i)π(j)
µν (6.47)

in equations (6.41) and (6.42) to get a linear system for the coefficients xπ. If one can

show that this linear system has a solution then the existence of a first order reduc-

tion with candidate symmetrizer H1 follows with the arguments given above. This

procedure is shown for N = 3 in appendix Appendix B and we performed the same

calculations for N ≤ 4 using computer algebra. In this Mathematica notebook we

are using xTensor [21], it is available online [1, automatic construction of J.nb].

For arbitrary N the number of coefficients increases like N !. Although many of

them can be considered redundant because of the symmetries of Vµν and Jµν , the

construction of the linear system for the xπ is difficult for arbitrary N . Therefore

we leave this question open.
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Connection to energy conservation. Given an FTNS symmetric hyperbolic

system it is straightforward to show that the quantity

E :=

∫
d3xu†iH

ij

Nuj (6.48)

is a conserved energy in the principal part, i.e. E > 0 and ∂tE ' 0. To show

this one uses the positivity of H
ij

N and the equations of motion (6.1) together with

integration by parts:

∂tE '
1

2

N−1∑
µ,ν=0

∫
d3x ε̇µν

=
1

2

N−1∑
µ,ν=0

(−1)N−µ−1

∫
d3x v†µV

p i j
µν ∂

(2N−µ−ν−1)
pij vν = 0, (6.49)

where

ε̇µν :=
(
∂

(N−µ−1)
i v†µ

)
T
p i j
µν ∂

(N−ν)
pj vν +

(
∂

(N−µ)
pi v†µ

)
T
† p j i
νµ ∂

(N−ν−1)
j vν (6.50)

and

∂
(2N−µ−ν−1)
pij vν = ∂p∂i1 . . . ∂iN−µ−1

∂j1 . . . ∂jN−ν−1
vν . (6.51)

Since vµ is an arbitrary solution of the equations of motion this implies that there

exist fluxes φpµν such that

ε̇µν = ∂pφ
p
µν ∀µ, ν = 0, . . . , N − 1. (6.52)

The existence of a symmetric hyperbolic first order reduction with the sym-

metrizer H
ij

1 means that there exist fluxes φpµν of the form

φpµν =
(
∂

(N−µ−1)
i v†µ

)
F
p i j
µν ∂

(N−ν−1)
j vν , (6.53)

with

F
p i j
µν = J

p i j
µν + T

p i j
µν , (6.54)

i.e. that the vµ appear in the fluxes only with (N − µ− 1) derivatives.

7. Conclusion

We described how the existing notion of strong hyperbolicity for first and sec-

ond order in space evolution equations [14,11] can be extended to FTNS systems,

i.e. evolution equations of arbitrary spatial order. The definitions of FTNS strong

and symmetric hyperbolicity allow for the direct construction of well-posed initial

(boundary) value problems for systems of higher order.

This extension is achieved by proposing a reasonable definition of strong hyper-

bolicity for FTNS systems and showing that this new definition can be reduced

to the lower order equivalent. The proof is performed with the help of an iterative
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differential reduction of the FTNS system from arbitrary to first order. One finds

that an evolution system is FTNS strongly hyperbolic if and only if there exists a

first order reduction which is strongly hyperbolic in the standard first order sense.

We also considered symmetric hyperbolicity of FTNS systems. In this case one

finds that it is better to introduce a direct reduction to first order instead of using

the iterative method applied to prove statements about strong hyperbolicity. We

proposed a definition of FTNS symmetric hyperbolicity and were able to show for

N ≤ 4 that it is equivalent to the existence of a direct first order reduction which is

symmetric hyperbolic in the standard first order sense. For higher orders we were

not successful in showing equivalence, but only one direction, that the existence of a

symmetric hyperbolic first order reduction implies FTNS symmetric hyperbolicity.

There are various questions which can be addressed in further analysis. One is

that the proofs about strong hyperbolicity rely strongly on three spatial dimensions,

because the Levi-Civita symbol εijk is used. Whether a similar construction is pos-

sible for other spatial dimensionality is not known. For symmetric hyperbolicity the

spatial dimensionality is not used in the calculations, i.e. the results apply to any

dimension. However, as mentioned above, equivalence for N > 4 is not yet shown.

Finally, it is essential for the construction of approximate solutions to identify

good numerical methods. Therefore it is also of interest to analyze the connection

between high order hyperbolicity and e.g. stability of finite difference methods.
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Appendix A. Pseudo-differential reduction method

Reduction variables: To define strong hyperbolicity, in the literature a pseudo-

differential reduction method is used, see for example [23]. With our calculations

from section 5 it is straightforward to apply this method to FTNS systems as

well. One takes a Fourier transformation in space of the FTNS system (4.4) with

wave number ωi = |ω|si. The Fourier transforms of the vµ are denoted v̂µ and we

introduce a reduction variable d̂0 := i|ω|v̂0.

Principal part: Using the reduction variable the principal part of the Fourier

transformed system (the terms with the highest order of |ω|) can be written as

∂t

(
(i|ω|)N−2d̂0

(i|ω|)N−µ−1v̂µ

)
' i|ω|P sN

(
(i|ω|)N−2d̂0

(i|ω|)N−µ−1v̂µ

)
, (A.1)

where P sN is the principal symbol, (4.9), of the FTNS system (4.4) and the non

principal terms not shown here are lower order in |ω|. Applying this reduction (N−1)

times results in a first order pseudo-differential system with principal symbol P sN .
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Hence, using definition 4b, an FTNS system is strongly hyperbolic if and only if

there exists a strongly hyperbolic pseudo-differential reduction to order (N − 1).

Appendix B. FT3S symmetric hyperbolicity through direct first

order reduction

Problem statement: In this appendix we perform the main steps in showing

that every FT3S candidate symmetrizer implies the existence of a direct first order

reduction with associated candidate symmetrizer. That is, we perform the calcula-

tions which show that the system (3.54),(3.56) has a solution provided that (3.52)

holds.

We start with repeating the system of interest in a compact form. With the

definition (3.55), i.e.

V p ij kl := T p ij kl − T †p kl ij (B.1)

equation (3.52) gets

V (p ij kl) = 0 (B.2)

and V p ij kl automatically satisfies

V p ij kl = V p (ij) (kl). (B.3)

We are going to use these properties as assumptions in the proof that the sys-

tem (3.54),(3.56), i.e.

Jp ij kl = Jp (ij) (kl), J (p| ij |kl) = 0, Jp ij kl − J†p kl ij = −V p ij kl, (B.4)

has a solution.

We do this by explicit construction using the decomposition

Jp ij kl =

Jp ij kluu Jp ij kuv Jp ijuw

Jp i klvu Jp i kvv Jp ivw
Jp klwu Jp kwv Jpww

 . (B.5)

The construction procedure is performed for each component in this decomposition

separately.

uw-, vw- and ww-component: We start with the most simple cases, Juw, Jvw
and Jww. As we can read off from definition (B.1), the following equations hold

V † p ijuw = −V p ijwu , V † p ivw = −V p iwu, V † pww = −V pwu. (B.6)

Using this and choosing

Jpww = 0, Jp ivw = 0, Jp kwv = −V p kwv , Jp ijuw = 0, Jp klwu = −V p klwu (B.7)
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one finds that

Jpww − J† pww = 0 = −V (p)
ww = −V pww, Jp ivw − J† p iwv = V † p iwv = −V p ivw ,

Jp iwv − J† p ivw = −V p iwv , Jp ijuw − J† p ijwu = V † p ijwu = −V p ijuw ,

Jp ijwu − J† p ijuw = −V p ijwu , J (p k)
wv = −V (p k)

wv = 0,

J (p kl)
wu = −V (p kl)

wu = 0. (B.8)

Hence, (B.7) is a solution of the uw-, vw- and ww-components of (B.4).

uu-component: Solving for the uu-component of J involves the most lengthy

calculations. Using again the FT3S conservation property

V (p ij kl)
uu = 0 (B.9)

one finds that one solution of the UU -component of (B.4) is

Jp ij kluu = −1/2V p ij kl1 − 9/20V p ij kl4 − 3/20V p ij kl5 − 1/20V p ij kl6 − 7/20V p ij kl7

+ 1/20V p ij kl8 + 7/20V p ij kl9 + 9/20V p ij kl10 + 3/20V p ij kl11 , (B.10)

with

V p ij kl1 := V p ij kluu ,

V p ij kl2 := V p kl ijuu ,

4V p ij kl3 := V p ik jluu + V p jk iluu + V p il jkuu + V p jl ikuu ,

2V p ij kl4 := V i pj kluu + V j pi kluu ,

4V p ij kl5 := V i pk jluu + V j pk iluu + V i pl jkuu + V j pl ikuu ,

2V p ij kl6 := V k pl ijuu + V l pk ijuu ,

4V p ij kl7 := V k pi jluu + V k pj iluu + V l pi jkuu + V l pj ikuu ,

2V p ij kl8 := V i kl pjuu + V j kl piuu ,

4V p ij kl9 := V i jk pluu + V j ik pluu + V i jl pkuu + V j il pkuu ,

2V p ij kl10 := V k ij pluu + V l ij pkuu ,

4V p ij kl11 := V k il pjuu + V k jl piuu + V l ik pjuu + V l jk piuu . (B.11)

The solution (B.10) is not unique. If Juu solves the uu-component in (B.4)

then Jp ij kluu +W p ij kl
uu is also a solution for every Wuu that satisfies

W † p kl ijuu = W p ij kl
uu , W (p| ij |kl)

uu = 0 = W (p kl) ij
uu , W p kl ij

uu = W p (kl) (ij)
uu .

To construct (B.10) we make the ansatz that Juu is a linear combination of Vuu
with permuted indices. Since Jp ij kluu needs to be symmetric in (i, j) and (k, l), and

since also V p ij kluu is automatically symmetric in (i, j) and (k, l) the number of inde-

pendent coefficients reduces to 11:

Jp ij kluu =

11∑
N=1

xNV
p ij kl
N , (B.12)
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where the VN can be read off from (B.11). Note that

V † p kl ij1 = −V p ij kl1 , V † p kl ij2 = −V p ij kl2 , V † p kl ij3 = −V p ij kl3 ,

V † p kl ij4 = −V p ij kl10 , V † p kl ij5 = −V p ij kl11 , V † p kl ij6 = −V p ij kl8 ,

V † p kl ij7 = −V p ij kl9 . (B.13)

Using the ansatz (B.12) together with (B.13) in the uu-component of the last of

equations (B.4) one finds a linear system for the coefficients xi. The solution of this

system restrict the possible choices of the coefficients to

x1 = −1/2, x2 = 0, x3 = 0, x8 = −x6,

x9 = −x7, x10 = −x4, x11 = −x5. (B.14)

Here we did not rely on the conservation equation (B.2). Analogously, using (B.12)

and (B.14) in the second equation of (B.4) one finds that making the choice

x4 = − 9

20
, x5 = − 3

20
, x6 = − 1

20
, x7 = − 7

20
. (B.15)

leads to

J (p| ij |kl)
uu = −1/2V (p ij kl)

uu . (B.16)

One can verify this by using

V (p ij kl) =
1

30

(
V p ij kl1 + V p ij kl2 + 4V p ij kl3 + 2V p ij kl4 + 4V p ij kl5 + 2V p ij kl6

+ 4V p ij kl7 + 2V p ij kl8 + 4V p ij kl9 + 2V p ij kl10 + 4V p ij kl11

)
. (B.17)

Hence, with the choice (B.14) and (B.15) the ansatz (B.12) results in the solu-

tion (B.10) of the uu-component of (B.4) provided that the uu-component of (B.2)

holds.

vv-component: For the vv-component the calculations were already done in [11].

The approach is the same as for the uu-component. One finds that

Jp i kvv = −1/2V p i kvv + 1/6V i k pvv − 1/3V i p kvv + 1/3V k i pvv (B.18)

solves the vv-component of (B.4) provided that the vv-component of (B.2) is sat-

isfied.

uv-component conservation: Finally one can show in a similar way that

Jp ij kuv = −3/4V p ij kuv + 1/2V p k(i j)
uv + 3/4V k ij puv − 1/2V k p(i j)uv , (B.19a)

Jp k ijvu = −1/4V p k ijvu − 1/2V p (i j)k
vu − 3/4V p k ijvu + 1/2V k (i j)p

vu (B.19b)

is the desired solution for the uv-component of (B.4).

Here it is interesting that one does not need to start from the most general

ansatz that Juv and Jvu are linear combinations of both, Vuv and Vvu, but that a



38 D. Hilditch and R. Richter

more restricting ansatz is sufficient:

Jp ij kuv = x1V
p ij k
uv + x2V

p k(i j)
uv + x3V

k ij p
uv + x4V

k p(i j)
uv (B.20a)

+ x5V
(i j)k p
uv + x6V

(i j)p k
uv + x7V

(i| pk |j)
uv ,

Jp ij kvu = x8V
p k ij
vu + x9V

p(i j) k
vu + x10V

k p ij
vu + x11V

k(i j) p
vu (B.20b)

+ x12V
(i| p k|j)
vu + x13V

(i| k p|j)
vu + x14V

(i j) pk
vu .

The basic reason for that is

V † p ij kuv = −V † p k ijvu . (B.21)

Using this ansatz as before in (B.4) one finds that (B.19) satisfies

Jp ij kuv = Jp (ij) k
uv , J (p| ij |k)

uv = 0, J (p| k |ij)
vu = V (p k ij)

vu .

Altogether this shows that each FT3S candidate symmetrizer implies the exis-

tence of a direct first order reduction with associated candidate symmetrizer.�
The above calculations are presented in completeness in the Mathematica note-

book flux construction.nb which can be found online [1].

Appendix C. Problem in construction of FT2S symmetric

hyperbolic reductions

In section 3.4 we mentioned that we cannot use FT3S symmetrizers to construct

symmetrizers for FT2S reductions. Here we explain why this approach does not

work.

C.1. Simple construction of FT2S symmetrizers

Given an FT3S symmetrizer, Hia jb
3 , the natural first step in the construction of an

FT2S symmetrizer, Hij ab
2 , is the ansatz

Hij ab
2 =

(
γij 0

0 Hia jb
3

)
. (C.1)

FT2S conservation equations: The terms which contain reduction parameters

in the product of H2 with the FT2S principal matrix, Hij ab
2 Ap2jkbc, are given by

J̃p ik ac =


γip 0 0 0

0 Hia pb
uu Hia p

uv Hia
uw

0 Hi pb
vu Hi p

vv Hi
vw

0 Hpb
wu Hp

wv Hww




(Du)k (D̄u)kc 0 0

(D)b
k (D̄)b

kc 0 0

(Dv)k (D̄v)kc 0 0

(Dw)pk (D̄w)pkc 0 0

 , (C.2)

where we already contracted a couple of δ’s. If there exists an FT2S reduction which

has Hij ab
2 as a symmetrizer then, according to the definitions in section 2 and the

antisymmetry of the reduction variables, the following equations are satisfied

J̃ (p ik) ac − J̃†(p ki) ca = Ṽ (p ik) ac, J̃p ik ac = −J̃p ic ak, (C.3)
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where

Ṽ p ik ac = Hij ab
2 Ãp2jkbc − Ã

†p
2
i
j
a
bH

jk bc
2 (C.4)

and

Ãp2jkbc = Ap2jkbc
∣∣
D=0,D̄=0

. (C.5)

Assume that (C.3) has a solution

J̃p ik ac = V̄ p i[k| a|c], (C.6)

where V̄ p ik ac is a matrix that does not contain D or D̄. To find the corresponding

solution for the reduction parameters one multiplies (C.6) from the left by the

inverse of Hij ab
2 and gets

H−1
2 ji baJ̃

p ik ac =


δpj (Du)k δpj (D̄u)kc 0 0

δpj (D)b
k δpj (D̄)b

kc 0 0

δpj (Dv)k δpj (D̄v)kc 0 0

(Dw)pk (D̄w)pkc 0 0

 !
= H−1

2 ji baV̄
p i[k| a|c]. (C.7)

This implies that H−1
2 ji baV̄

p i[k| a|c] has the same structure as H−1
2 ji baJ̃

p ik ac. In

particular the (2, 2)-component of this product must be of the form δpj V̄22b
kc and the

last two columns need to vanish. The counterexample given in appendix C.2 shows

that this is not always the case, i.e. there are FT3S systems for which there exists

no FT2S reduction with the symmetrizer Hij ab
2 . This does not mean that there is

no symmetric hyperbolic FT2S reduction, but if there is one then its symmetrizer

has no direct relation to the given FT3S symmetrizer.

Discussion: The problems in the construction of a second order conserved energy

from a given third order symmetrizer can be attributed to the fact that the prod-

uct of H−1
2 and J̃ contain δpj . If e.g. the (2, 2)-component of this matrix was not

δpj (D̄)b
kc, but (D̄)jb

pkc then this would not restrict the form of the (2, 2)-component

of H−1
2 ji baV̄

p i[k| a|c]. Thus, in order to avoid these problems we need reduction pa-

rameters with two lower indices. This can be achieved by using a direct reduction

to first order and construct a first order symmetrizer from Hia jb
3 , as described in

section 3.6.

C.2. Not every FT3S candidate has an associated FT2S candidate

In what follows we present an example where the conserved energy of

a third order system is not the energy of any second order reduction

in the sense of section 3.2. The calculations are done in the notebook

counter example 3rd order sym hyp.nb which is available online [1].
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Counterexample: Our counterexample is the following FT3S system

∂tu = axuu∂xu+ ayuu∂yu+ auvv, (C.8)

∂tv = axxvu∂x∂xu+ axyvu∂x∂yu+ ayyvu∂y∂yu+ axvv∂xv + ayvv∂yv + avww,

∂tw = axxxwu ∂x∂x∂xu+ axxywu ∂x∂x∂yu+ axyywu ∂x∂y∂yu+ ayyywu ∂y∂y∂yu+ axxwv∂x∂xv

+ axywv∂x∂yv + ayywv∂y∂yv + axww∂xw + ayww∂yw,

with

axuu =
17273

7384
, ayuu = 1, auv = −12951

14768
,

axxvu = −2855

1846
, axyvu = − 8575

44304
, ayyvu = −1095

3692
,

axvv = 1, ayvv =
1

2
, avw = 1,

axxxwu =
1

2
, axxywu =

1

9
, axyywu = 0,

ayyywu =
1

3
, axxwv = 1, axywv =

1

10
,

ayywv = 1, axww = 1, ayww = 1. (C.9)

It has the conserved energy

E3 =

∫
d2x (∂i∂ju, ∂iv, w)Hij kl

∂k∂lu

∂kv

w

 , (C.10)

with

Hij kl =

Hij kl
uu Hij k

uv Hij
uw

H†kl iuv Hi k
vv Hi

vw

H†kluw H†kvw Hww

 . (C.11)

In the upper left we have

Hij kl
uu =


hxxxxuu hxxxyuu hxxyxuu hxxyyuu

hxxxyuu hxyxyuu hxyyxuu hxyyyuu

hxxyxuu hxyyxuu hyxyxuu hyxyyuu

hxxyyuu hxyyyuu hyxyyuu hyyyyuu

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 4/27

 ,

next the off-diagonal components

Hij k
uv =


hxxxuv hxxyuv

hxyxuv hxyyuv

hyxxuv hyxyuv

hyyxuv hyyyuv

 =


1/2 0

1/3 0

0 0

0 1/3

 ,
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the vanishing terms

Hij
uw =


hxxuw
hxyuw
hyxuw
hyyuw

 =


0

0

0

0

 ,

and the simple remaining

Hi k
vv =

(
hxxvv h

xy
vv

hxyvv h
yy
vv

)
=

(
1 1/10

1/10 1

)
, Hi

vw =
(
hxvw hyvw

)
=
(

0 0
)
,

Hww = 1. (C.12)

Nonexistence of an FT2S symmetrizer: Given the system (C.8) and the sym-

metrizer (C.11) the construction of a second order reduction with symmetrizer

(
γik 0

0 Hij kl

)
(C.13)

involves only solving linear equations. One finds that the corresponding linear sys-

tem is overdetermined and has no solution for the above example. Hence, there is

no reduction to second order such that the following expression is conserved

∫
d2x (∂iu, ∂idj , ∂iv, w)

(
γik 0

0 Hij kl

)
∂ku

∂kdl
∂kv

w

 . (C.14)

This differs from the case of reductions of second order systems to first order sys-

tems. There every second order energy is also the energy of a certain first order

reduction.

Appendix D. Auxiliary constraint evolution for direct first order

reductions

In section 6.1 we introduced a direct reduction of FTNS systems to first order. The

calculations to derive the auxiliary constraint evolution system for this reduction

are shown here.

Evolution of the cµν : We start with the constraints that allow one to change the

derivative order of the equation. For µ = 0, . . . , N − 3 and ν = 1, . . . , N −µ− 2 one
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finds

∂t(c
µ
ν )i = ∂t∂(i1(dµν−1)i2...iν) − ∂t(dµν )i1...iν (D.1a)

=

µ+1∑
σ=0

(Aµσ)j [∂(i1(dσµ+ν−σ)i2...iν)j − (dσµ+ν−σ+1)i1...iνj ]

+

µ∑
σ=0

µ−σ+1∑
ρ=1

(Bµρσ)j [∂(i1(dσµ+ν−σ−ρ)i2...iν)j − (dσµ+ν−σ−ρ+1)i1...iνj ]

+ ∂(i1(Cµν−1)i2...iν) − (Cµν )i1...iν

=

µ+1∑
σ=0

(Aµσ)j [(cσµ+ν−σ+1)i1...iνj + (c̄σµ+ν−σ)(i1...iν)j ]

+

µ∑
σ=0

µ−σ+1∑
ρ=1

(Bµρσ)j [(cσµ+ν−σ−ρ+1)i1...iνj

+ (c̄σµ+ν−σ−ρ)(i1...iν)j ] + ∂(i1(Cµν−1)i2...iν) − (Cµν )i1...iν ,

where for ν = 1 we identified Cµ0 := Cµ and dµ0 = vµ. The source terms containing sµ

obviously cancel. Next we do the same calculation for µ = 0, . . . , N − 2 and ν =

N − µ − 1. The main difference is that the terms which contain Aµν include a

derivative which is expressed differently in terms of the constraints. One finds

∂t(c
µ
N−µ−1)i = ∂t∂(i1(dµN−µ−2)i2...iN−µ−1) − ∂t(dµ)i1...iN−µ−1

(D.1b)

=

min(µ+1,N−2)∑
σ=0

(Aµσ)j [∂(i1(dσ)i2...iN−µ−1)j − ∂(i1(dσ)i2...iN−µ−1j)]

+

µ∑
σ=0

µ−σ+1∑
ρ=1

(Bµρσ)j [∂(i1(dσN−σ−ρ−1)i2...iN−µ−1)j − (dσN−σ−ρ)i1...iN−µ−1j ]

+ ∂(i1(CµN−µ−2)i2...iN−µ−1) − (CµN−µ−1)i1...iN−µ−1

=

min(µ+1,N−2)∑
σ=0

(Aµσ)j(c̄σN−σ−1)(i1...iN−µ−1)j

+

µ∑
σ=0

µ−σ+1∑
ρ=1

(Bµρσ)j [(cσN−σ−ρ)i1...iN−µ−1j + (c̄σN−σ−ρ−1)(i1...iN−µ−1)j ]

+ ∂(i1(CµN−µ−2)i2...iN−µ−1) − (CµN−µ−1)i1...iN−µ−1
,

where for µ = N − 2 the terms containing vN−1 cancel and we identify CN−2
0 :=

CN−2 and dN−2
0 = vN−2.

Evolution of the c̄µν : Now we show the analogous statement for the c̄µν . To make

the resulting expressions shorter we use the following notation for the non symmetric
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part of a tensor X

Xi1...{iα...iβ}...iγ : = Xi1...iα...iβ ...iγ −Xi1...(iα...iβ)...iγ =: usym
iα,...,iβ

(Xi1...iα...iβ ...iγ ).

(D.2)

Furthermore we use the following notation for derivatives of the constraints

(∂λcµν )i1...iν+λ := ∂i1 . . . ∂iλ(cµν )iλ+1...iν+λ ,

(∂λc̄µν )i1...iν+λ+1
:= ∂i1 . . . ∂iλ(c̄µν )iλ+1...iν+λ+1

. (D.3)

Again we start with the cases where µ = 0, . . . , N − 3 and ν = 0, . . . , N − µ− 2

and find

∂t(c̄
µ
ν )i = ∂t∂{i1(dµν )i2...iν+1} (D.4a)

= ∂{i1(Cµν )i2...iν+1} +

µ+1∑
σ=0

(Aµσ)j∂{i1(dσµ+ν−σ+1)i2...iν+1}j

+

µ∑
σ=0

µ−σ+1∑
ρ=1

(Bµρσ)j∂{i1(dσµ+ν−σ−ρ+1)i2...iν+1}j

= ∂{i1(Cµν )i2...iν+1}

−
µ+1∑
σ=0

µ+ν−σ∑
λ=0

(Aµσ)j(∂λ+1cµµ+ν−σ−λ+1){i1...iν+1}j

−
µ+1∑
σ=0

µ+ν−σ−1∑
λ=0

(Aµσ)j(∂λ+1c̄µµ+ν−σ−λ){i1...iν+1}j

−
µ∑
σ=0

µ−σ+1∑
ρ=1

µ+ν−σ−ρ∑
λ=0

(Bµρσ)j(∂λ+1cµµ+ν−σ−ρ−λ+1){i1...iν+1}j

−
µ∑
σ=0

µ−σ+1∑
ρ=1

µ+ν−σ−ρ−1∑
λ=0

(Bµρσ)j(∂λ+1c̄µµ+ν−σ−ρ−λ){i1...iν+1}j .

There we used (6.8) to express the reduction variables in terms of constraints and

spatial derivatives of the vµ. Since we consider only the non symmetric part of the

expression the terms which contain vµ cancel and one finds the equation above.

Finally, the case µ = 0, . . . , N − 2 and ν = N −µ− 1 is shown analogously. The

only difference is that the right hand side contains terms with derivatives of higher
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order acting on the reduction variables:

∂t(c̄
µ
N−µ)i = ∂t∂{i1(dµ)i2...iN−µ} (D.4b)

= ∂{i1(CµN−µ−1)i2...iN−µ} + usym
i1...iN−µ

min(µ+1,N−2)∑
σ=0

(Aµσ)j∂i1∂(i2(dσ)i3...iN−µj)


+

µ∑
σ=0

µ−σ+1∑
ρ=1

(Bµρσ)j∂{i1(dσN−σ−ρ)i2...iN−µ}j

= ∂{i1(CµN−µ−1)i2...iN−µ}

− usym
i1...iN−µ

min(µ+1,N−2)∑
σ=0

N−σ−2∑
λ=0

(Aµσ)j(∂λ+2cσN−σ−λ−1)i1(i2...iN−µj)


− usym
i1...iN−µ

(
µ+1∑
σ=0

N−σ−3∑
λ=0

(Aµσ)j(∂λ+2c̄σN−σ−λ−2)i1(i2...iN−µj)

)

−
µ∑
σ=0

µ−σ+1∑
ρ=1

(Bµρσ)j

(
N−σ−ρ−1∑

λ=0

(∂λ+1cσN−σ−ρ−λ){i1...iN−µ}j

+

N−σ−ρ−2∑
λ=0

(∂λ+1c̄σN−σ−ρ−λ−1){i1...iN−µ}j

)
.

Hence, we derived an explicit expression for the constraint evolution system which

shows that this system is closed.
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