First results of the ZEPLIN-III dark matter detector

Alexandre Lindote LIP-Coimbra & STFC Rutherford Appleton Laboratory

on behalf of the ZEPLIN-III collaboration:

University of Edinburgh, Imperial College London, ITEP-Moscow, LIP-Coimbra, STFC Rutherford Appleton Laboratory

7th New Worlds in Astroparticle Physics

Dark Matter in the Universe

- Different cosmological observations point to a significant nonbaryonic dark matter component.
 - Rotation curves of galaxies, CMB anisotropy, gravitational lensing, etc.

- WIMPs (Weakly Interacting Massive Particles) such as the SUSY neutralino are amongst the best candidates.
 - Mass scale from tens to hundreds of GeV

Direct Detection

- Look for signals from WIMP interactions with ordinary matter:
 - low energy nuclear recoils (< 100 keV)
 - very low interaction rates (< 1 event/kg/year)

- So we need detectors...
 - with large target masses
 - very low threshold
 - built from radio-pure materials
 - shielded from external radiation
 - some discrimination technique between nuclear and e- recoils
 - operate in deep underground laboratories

Recoil Energy, E_R (keV)

Two-phase xenon

- Interactions in LXe produce scintillation (S1) and ionisation (S2).
- The S2/S1 ratio provides the discrimination between e⁻/γ interactions and nuclear recoils (NR).

ZEPLIN-III: Design

- Active volume with 12 kg of low background LXe (40 yr old - low Kr)
- Open plan with no surfaces

 (fiducial volume from position reconstruction)
- High field, improved discrimination
- Construction in oxygen free Cu (electron beam welded)
- 31 2" PMTs (QE ~ 30%) in the liquid:
 - improved primary light collection
 - fine position sensitivity

ZEPLIN-III: Assembling

The second state of the se

Boulby Underground Lab

• Located in the NE of England, in a working salt and potash mine

ZEPLIN-III: Deployment at Boulby

there is long and the man when the stand the in the second the second and

- Xenon safety dumps -

Detector access points

Vacuum, purification and re -circulation systems

Data acquisition and electronic systems

Steel encased 20 cm Pb gamma ray shielding

30 cm Polypropylene neutron shielding

First Science Run

83 days @ 84% live time
847 kg.days raw data
Fully shielded (10⁵ attenuation for rock γ and n)

- Daily calibration with ⁵⁷Co
- → Two ¹³⁷Cs calibrations (start and end of run)
- Two AmBe calibrations
 (start and end of run, each 5h long)

Data acquisition and processing

A MARTIN A MARTINE

62 waveforms acquired in 36 μs timelines
 (31 PMTs in dual range)

the is fart and the month in the interest with the second of the second with the

• Waveforms processed using ZE3RA (ZEPLIN <u>3</u> Reduction and <u>A</u>nalysis)

Daily ⁵⁷Co calibration

- Performed daily for stability checks and scintillation response
- 1.8 pe/keVee @ 3.9 kV/cm (5 pe/keVee @ 0-field)
- $\sigma = 5.4\%$ resolution @ 122 keV (using S1-S2 anti-correlation)
 - $\circ \sigma = 16.3\%$ if using S1 only, 8.8% if using S2 only
- Position reconstruction: (x,y) from LS algorithm ($\sigma \sim a$ few mm), z from (S2-S1) time difference ($\sigma \sim 0.1$ mm)

Daily quality checks

- Light and ionisation yields
- Detector tilt (unstable floor in the lab cave)
- Low-energy gamma background
- Mean electron lifetime in the liquid (purity)

Neutron and Compton calibration

- Compton scattering from $^{137}Cs \gamma s$ used to populate the low-energy e⁻ recoil region.
- Neutron calibration with AmBe source to simulate response to WIMPs.

WIMP search box: 2 to 16 keVee, μ to μ-2σ of the NR population (~50% of recoils)
 1:5000 γ/neutron discrimination at high field

Energy conversion & efficiencies

 Conversion of energy scale from electron equivalent to nuclear recoil:

$$E_{nr} = \frac{S1}{L_y} \frac{S_e}{L_{eff}S_n} = E_{ee} \frac{S_e}{L_{eff}S_n}$$

- *Mis-match observed between NR calibration (AmBe) and the GEANT4 simulation.*
- Efficiencies calculated using a variety of sources (data scanning, calculations, hardware tests)
- Simulations thoroughly tested (model validation and alternative MCs)
- Variation of L_{eff}×S_n with energy below ~6 keVee was determined by matching the simulation to the AmBe spectrum. Recent measurements of L_{eff} also show dip at lower energies.
- Effective threshold (3-fold S1 coincidence) at 1.7 keVee

Science data

- 7 events seen in WIMP search box
- Equivalent exposure of 126.7 kg.days after all cuts (fiducial volume, DAQ dead time, NR acceptance, analysis cuts, etc.)

Limits on WIMP cross section

- o 90% c.l. upper limit of 3.05 events
- Using the 'canonical' halo model: $Q_{DM} = 0.3 \text{ GeV/cm}^3$; $v_0 = 220 \text{ km/s}$; $v_{esc} = 600 \text{ km/s}$; $v_{earth} = 232 \text{ km/s}$
- Minimum of 8.1×10^{-8} pb for a WIMP mass of 60 GeV/ c^2

Lebedenko et al., arXiv:0812.1150, PRD (accepted)

Second science run - upgrades

- Lower background PMTs (×30 lower) (major source of background in FSR)
- Active veto system
 (remove neutron and γ events in coincidence)
- Fully automated daily operations (improved duty cycle)
- SSR to start next month

Second science run - sensitivity

 Improvement in sensitivity by one order of magnitude after 1 year of continuous operation (~10⁻⁹ pb)

Summary

• First science run completed:

- Long term stable operation (at high E-field) demonstrated
- Excellent electron/nuclear recoil discrimination (>1:5000)
- Effective threshold of 1.7 keVee
- World-level sensitivity ($\sigma_{W-n} = 8.1 \times 10^{-8} \text{ pb}$)
- SSR to start very soon with an upgraded detector
- Tenfold sensitivity improvement within reach

In Memoriam Vadim Nikolaevitch Lebedenko 1939 - 2008

ZEPLIN-III collaboration