SNO Status update

José Maneira, LIP-Lisboa on behalf of the SNO collaboration NWAP09, São Tomé September 8, 2009

Outline

Introduction

- The Sudbury Neutrino Observatory
- The three data taking phases
- Solar neutrinos, upcoming analyses
 - Motivation for a low energy threshold
 - Improving the energy response of SNO
 - Improving the background determination
 - Preliminary plots
- Cosmic rays and atmospheric neutrinos
 - New results from the full SNO data set

SNO Collaboration (and detector...)

Sudbury Neutrino Observatory

Acrylic vessel (AV) 12 m diameter

1000 tonnes D₂O (\$300 million)

1700 tonnes H_2O inner shielding

5300 tonnes H_2O outer shielding

~9500 PMT's

The heavy water has been returned to AECL. Ongoing detector developments for SNO+.

J. Maneira (LIP) / SNO / São Tomé / September 2009

5

SNO Phase III

m

Neutral-Current Detectors (NCD)

- Proportional counters with ³He, 40 tubes of ~10 m in a 1x1 m grid
- Independent measurement of the NC flux

Phase III

- PMT signal reconstruction harder
- Break the correlations between CC/NC

Summary of solar neutrino results

Solar neutrinos

- No more data, so what's new?
- Many, many improvements to the analysis
 - Event reconstruction
 - Monte Carlo simulations
 - Background cuts and estimations
 - Combination of different phases
- What do we gain from these?
 - Lower energy threshold
 - Sensitivity to lower energy neutrinos
 - Increased statistics
 - Reduced systematics
 - Avoid double-counting of phase-correlated sources
 - Break correlations between CC and NC

- Previous analyses 5.0/5.5/6.0 MeV Phase I/II/III
- Upcoming results: combined phase I+II with 3.5 MeV
- Later: combined phases I+II+III

Why lower threshold?

g

- Sensitivity to lower energy vs
 - Can we see the upturn in LMA survival probability?

• New Physics models

- Increased statistics
 - More neutrinos from the whole ⁸B spectrum
 - Significant improvements in the errors of all signals (also NC!)

Advantages of new analysis

By lowering threshold

0.45

- By combining two phases
 - The same NC flux parameter is used, with different, known neutron efficiencies

Signal extraction from max likelihood fit with Multi-dimensional PDFs for signals and backgrounds Dominant systematics can float in fit

11

Rayleigh Scatte

35 Degree PMT Reflec

Prompt

PSUP Reflection

AV Reflection

Energy response

- Backgrounds are "only" tails from lower energy, so they depend strongly on resolution
- New energy estimator
 - Using both prompt and late light
 - More detailed detector model
 - Using improved 3D PMT model, channeldependent PMT efficiencies
 - 12% more hits, 6% narrower resolution
 - 60% reduction of internal backgrounds!
- Volume-weighted uncertainties
 - Huge improvement

	Phase I	Phase II
Old	± 1.2%	± 1.1%
New	± 0.6%	± 0.5%

Bias correction

10

15

20

25

30

35

Angle(degrees)

Energy response bias with z

- Also seen with optical source
 - Bias in PMT angular response in Z but not in other axes
- Optics effects not in MC
 - Acrylic vessel (AV) neck, bottom of AV, non-uniformity of concentrator reflectivity...
 - Hard to disentangle

Response correction

- Based on position/direction
- Derived from ½ of the N16 calibration data
- Checks and systematics with:
 - Other $\frac{1}{2}$
 - Neutrons, Rn spike

Backgrounds

- Need to disentangle several
 - D2O, H2O, AV, PMT
 - 214Bi, 208Tl
 - in- and ex-situ handles on D2O and H2O
 - PMT important for 3.5 MeV bin
 - Example: PMT
 - Not enough CPU to simulate data sample
 - PDFs from data, using "bifurcated" analysis with high charge tag for part of the events
 - Decay is beta-gamma, PMT can see flash from beta at early times

Low Energy Threshold Analysis > Uncertainties on CC Electron Recoil Spectrum

Physics reach

Cosmic rays and atmospheric neutrinos

- Disadvantages of SNO
 - Small: 1kton $D_2O + 1.7$ kton H_2O
 - Only through-going muons
 - 96% of expected rate: 140 /yr
- Advantages of SNO
 - Depth of 5890 mwe
 - Flat overburden
- Sensitivity to:

• Atmospheric neutrinos above the horizon

- o Cosmic muons only at $\cos \theta_{\text{zenith}} > 0.4$
- Rate at $0 < \cos \theta_{\text{zenith}} < 0.4 \sim 1/3$ of total
- Normalize the unoscillated flux
- Cosmic muons at high slant depth

Results

Paper published: SNO Collaboration, Phys.Rev.D80:012001,2009 hep-ex/0902.2776

- Cosmic ray muon flux
- 1.22 ± 0.09 of Even

Atmospheric neutrinos

- Cross-check of oscillations
- Normalization of the unoscillated flux from the 3D Bartol model:

SNO solar neutrino analyses

- After data taking stopped, data analysis is ongoing with more sophisticated techniques, aiming for the best possible precision
- Improvements in energy reconstruction and background analysis will allow for a low energy threshold of 3.5 MeV
- This, plus a combined analysis of phases I and II will give unprecedented precision on the NC flux and CC/ES spectra
- Stronger statements on the oscillation parameters
- And it's still not the last word: improvements to SNO's phase III are also being prepared for a combined 3-phase analysis

Other analyses

- Combined 3-phase muon and atmospheric neutrino results published
 - Unprecedented sensitivity to region above the horizon
- Searches for transient signals and "exotic" Physics ongoing

Flux measurements in the 3 phases

2.8

23

