Cosmic-Ray Shower Longitudinal Profiles for Mass and Cross-Section Analyses

S. Andringa, R. Conceição, M. Pimenta (LIP – Lisboa)
 New Worlds in Astroparticle Physics,
 São Tomé e Príncipe, September 2009

Extensive Air Showers

High numbers of low energy electrons excite N_2 producing fluorescence light (detected isotropically) and charged particles emit Cherenkov (directionally)

Muons (and electrons) will reach the ground and be detected in several km

Primary Composition and Cross-Section "Classical" Analyses in EAS

Statistical analysis give average composition as a function of Energy from * muon/electron densities (from Surface Array Detectors)

* position of shower maximum (from Fluorescence Detectors, analysis with Surface Array Detectors now being exploited and can allow combination of both variable types)

Historically we look at <Xmax> and its RMS, not yet the full distributions

And not the shower shape!!!

Cross-section comes also from the Xmax distribution.

Parameterizing the Shower Profiles

Electromagnetic Showers are parameterized from cascade equations (electron and gamma densities, electron and gamma energies, as a function of "shower-age")

The hadronic component changes the start-up and equilibrium conditions:

empirical parameterization proposed by Gaisser and Hillas (GH)

$$\mathbf{N} = \mathbf{N_{max}}(\frac{\mathbf{X} - \mathbf{X_0}}{\mathbf{X_{max}} - \mathbf{X_0}})^{\frac{\mathbf{X_{max}} - \mathbf{X_0}}{\lambda}} \exp{(\frac{\mathbf{X_{max}} - \mathbf{X}}{\lambda})}$$

two variables describe the maximum; two variables describe the shape: Xo ~ shower start (~ -120 g/cm²)? λ ~ interaction length (~60 g/cm²)?

Universal Shower Profile (USP)

Main shower characteristics are reflected in its maximum.

- Rescaling N/Nmax (=N')
- Shifting X-Xmax (=X')

gives an almost universal shape. Which can be derived from data

The USP is a better way to extract the two extra parameters statistically, or find characteristic deviations!

[dE/dX α N; dE/dXmax α Nmax]

$$\mathbf{N'} = (\mathbf{1}. - \frac{\mathbf{X'}}{\mathbf{X'_0}})^{-\frac{\mathbf{X'_0}}{\lambda}} \exp\left(-\frac{\mathbf{X'}}{\lambda}\right)$$

N' = N / Nmax

X' = X - Xmax

 $X'o = Xo - Xmax \sim shower length?$

 λ ~ interaction length?

Gaisser-Hillas -> Universal Shower Profile

Xmax and dE/dXmax are good observables (easy to measure) Xo and λ describe details of (almost universal) shower behaviour

Universal Shower Profile - Variables

$$\mathbf{N'} = (\mathbf{1}. - \frac{\mathbf{X'}}{\mathbf{X'_0}})^{-\frac{\mathbf{X'_0}}{\lambda}} \exp(-\frac{\mathbf{X'}}{\lambda})$$

Xo and λ change distribution tails in similar ways (highly correlated)

typical values are -900. / 60. g/cm²

X'o λ – shower width λ/X 'o – shower asymmetry easier to disentangle and measure; easier to understand and constrain?

Universal Shower Profiles: L and R

 $\mathbf{N'} = (\mathbf{1}. - \frac{\mathbf{X'}}{\mathbf{X'_0}})^{-\frac{\mathbf{X'_0}}{\lambda}} \exp(-\frac{\mathbf{X'}}{\lambda})$

(expanding around X'=0): N' ~ exp (-1/2 (X'/L)²) exp (R/3 (X'/L)³) gaussian and "rotation"

λ and X'o=Xo-Xmax recombined:

$$L = V\lambda X'o$$

characteristic gaussian length
for electromagnetic cascades:
Evis ~ dE/dXmax $V2\pi L$

 $R = \sqrt{\lambda/X'o}$ "rotation" parameter for energy transfer (hadronic -> electrom.)

Fe: "simultaneous" cascades p: "consecutive" cascades

L for Energy Reconstruction

Fe/p reasonably similar slow energy evolution stable within models

L [gcm⁻²]

L =
$$\sqrt{\lambda}$$
 X'o characteristic gaussian length for electromagnetic cascades:
Evis ~ dE/dXmax $\sqrt{2\pi}$ L

Energy α dE/dXmax (L stable within 5%)

L can be constrained instead of λ and Xo in the GH profile fits

(5% correction for invisible E)

with constant L, R varies along X'

R(X') can be calculated from dE/dX(X') with fixed L

 $[N' = \exp(-1/2 (X'/L)^2) \exp(R/3 (X'/L)^3)]$

R is not constant along all shower (can still be used in fits with full Gaisser-Hillas as $R = \sqrt{\lambda/X'o}$)

R ([-400,-200]g/cm²) is stable and different for Iron and Proton: new composition variable!

R for mass composition

A new variable, R, can be measured in sub-set of showers with visible (Xmax- 300) g/cm²

$$R = \sqrt{\frac{\lambda}{X'o}}$$

"rotation" parameter for energy transfer (hadronic -> electrom.)

Fe: "simultaneous" cascades

p: "consecutive" cascades

Composition parameter, from shower shape, independent of Xmax!

Shower Length from R

$$Xmax = X_1 + \Delta_o(R)$$

$$\Delta_0 = X \text{max} - X_1$$

sensitive to mass

Can be reconstructed:

$$\Delta_{o}(R) = a R + b \quad (!?)$$

Cross-section isolated as $X_1 = Xmax - \Delta_0(R)$

Mass composition and Cross-section

 Δ_0 , X_1 from R, Xmax for each event

Xmax is best mass observable but $(\Delta_0) = \text{Mass} / (X_1) = \text{Cross-section}$

Sensitivity for different models

QGSJET - II

EPOS 1.9

 Δ_o , X_1 from R, Xmax for each event; calibration Δ_o (R) and X_1 (R, Xmax) is model independent and should thus be derivable from data!

Mass Composition and Cross-section from Xmax distributions

Xmax distribution is gaussian •exponential for each energy bin

gaussian: with mean $<\Delta_o>$ and event-by-event fluctuations exponential with <X $_1>$ both have information on composition

Since $\Delta_o(R)$, R bins --> smaller width: --> extra sensitivity in X_1

Different regions in R can isolate p/Fe
--> two cross-sections at same energy

Fits of Xmax distributions in R bins (fixed E)

Fit of Xmax dist. (R) give statistical means $\langle X_1 \rangle$ and $\langle \Delta_0 \rangle$

<X₁> recovered for Fe/p pure samples; or break for mixed p/Fe

 $<\Delta_o>$ changes with R; possibility to calibrate $\Delta_o(R)$ in data directly

Strategy for [future] data analysis

Reconstruction:

Shower profiles characterized by Xmax, dE/dXmax.

Confirm L in USP data is enough to reconstruct Energy (E).

R reconstruction from N'(X' \sim -300gcm2) and L (for long events).

Statistical Analysis:

Fit Xmax distributions in E, R bins.

Extract/confirm $\Delta_o(R)$ calibration and measure $X_1(R)$.

Possible evolution in $X_1(R)$ would indicate mixed composition.

Event-by-event Analysis:

Look for patterns in Δ_0 and X_1 : different species?

Analysis of Δ_0 vs. X_1 : different models?

Conclusions and Outlook

- * Shower profiles characterized by Xmax, dE/dXmax, L and R
- * Xmax and R separate X_1 (cross-section) and Δ_0 (composition)
- * Two independent event-by-event variables for both analysis
- * Resolution of L, R, X_1 and Δ_0 depend on detector performance (and atmospheric conditions, possible only for long profile events)
- * Model independent, data-driven analysis preferred
- * Statistical analysis of cross-section and composition
- * Event-by-event separation for cross-section/composition
- * Extra information for analysis of interaction model parameters