A model for Net-Baryon rapidity

J. Alvarez-Muñiz, <u>R. Conceição</u>, J. Dias de Deus, M. C. Espírito Santo, J. G. Milhano, M. Pimenta

Motivation

- Net-Baryon = (Baryons Anti-Baryons)
 - Valence quarks
 - As the baryon number is conserved, the netbaryon keeps track of the energy-momentum carried by the incoming particles
- How does the fraction of energy carried by the net-baryon evolve as a function of the centreof-mass energy per nucleon?
 - At very high energy it is assumed that sea quarks dominate over the valence
- What is the role of the collision centrality?

What do we know?...

Experimental Data

- AGS (5 GeV central collisions)
- NA49 (17 GeV several centralities)
- RHIC (BRAHMS) (62.4 GeV and 200 GeV central collisions)

Current Model Predictions

- EPOS 1.61
- QGSJET-II.03

Net-Proton Data

No Feynman scaling observed SPS data have been corrected for weak decays

QGSJET-II and EPOS Predictions

- Weak decay Corrections Applied to Data
- QGSJET-II is not expected to perform very well at such low energies

Extra-Motivation

- The net-baryon has not been fully studied by Experiments
- In Monte Carlo hadronic models the physics of net-baryon production is very much obscured by the complexity of extensive and detailed codes
- Build a simple model to explain net-baryon data and predict the behaviour at higher energies

Our Model

Description of the model
Comparison with data
Predictions for higher energies

Model – String Formation

- Formation of extended color fields or strings
 Quark Combinatorial
- The string gets its
 energy-momentum
 from the valence quarks
 PDFs
 - Dependency of Q²
 - CTEQ6
 - Nuclear effects taken into account (EKS98)

$$E_A = (x_1 + x_2 + x_3)\frac{\sqrt{s}}{2}$$
$$P_A = (-x_1 + x_2 + x_3)\frac{\sqrt{s}}{2}$$

$$M = \sqrt{E^2 - P^2} = \sqrt{x_1 (x_2 + x_3) s}$$

String Characteristics (200 GeV)

Mass Spectrum of strings

Momentum of string A

Model – String Fragmentation

- Mechanism of String Fragmentation:
 - It is assumed that the string decays into a baryon and a meson
 - Kinematic Constraints
 - Both fundamental and excited states were considered taking spindependent weights (2j+1)
 - Unstable baryon were forced to decay in order to enter in net-baryon calculations
 - The contribution of s quarks was not considered at this point

Model – String Fragmentation II

- Mechanism of String Fragmentation:
 - The baryon produced will have the direction of the two nearest quarks in momentum
 - Diagram 1 is predominant at low energies
 - At high energies Diagram 2 will be as important as Diagram 1
- Can reproduce some features of string baryon junction and pop corn

 $x_3 < x_2 < x_1$

Net-Baryon Rapidity

Evolution with energy is a consequence of QCD evolution of the PDFs and kinematic constraints in the string fragmentation

Effective Q² – Data Fits

Linear Fit

350

400

N_{part}

300

Net-Proton

verify this assumption

Q² Centrality Dependence

- NA49 data
- Evolution of Q² with centrality
 - Fitted functions:

$$Q^{2} = Q_{0}^{2} \left(\frac{A}{2}\right)^{\alpha} [\text{GeV}^{2}]$$

$$\alpha = 0.53 \pm 0.13$$

 Using same formula but not imposing zero when A=0

 $\alpha = 1.70 \pm 0.62$

Linear Fit

 $\bullet \ \alpha = 1.0$

Since N_{part} of central collisions does not vary much we just need an interpolation function

Energy Dependence

Net-Proton

Net-Baryon

At central collisions

Evolution with collision energy (\sqrt{s})

• Relate effective Q² with collision energy using: • $Q_A^2 = Q_0^2 \left(\frac{N_{\text{part}}}{2}\right)^{\alpha} \left(\frac{s}{s_0}\right)^{\lambda_v} [\text{GeV}^2]$

With this law we can try to make some predictions for higher energies!

Net-Baryon Predictions

- Net-Baryon rapidity for central Pb–Pb collisions at Vs = 5.5 TeV
- Rapidity loss as function of beam rapidity

$$\langle \delta y \rangle = y_p - \langle y \rangle$$

- Used to give information about nuclear stopping
- Small uncertainty is due to the slow evolution of valence quark PDFs

Net-Baryon Predictions

- Fraction of energy carried by the net-baryon
 - The fast evolution at low energy is a consequence of kinematic constraints in the string fragmentation
 - At high energies the fraction of energy carried by the netbaryon depends on how fast Q² grows with it
 - Transverse momentum not taken into account

$$E = \frac{1}{N_{part}} \int_{-y_p}^{y_p} \langle m_T \rangle \cdot \cosh y \cdot \frac{dN_{B-\bar{B}}}{dy} \cdot dy$$

Conclusions

The role of the Net-Baryon is not negligible

- EPOS 1.61 and QGSJET-II have problems in reproducing the Net-Baryon data at low energies
- Our simple model can reproduce the Net-Baryon's main features including centrality dependence
- New (and forward) data needed!!
 - In particular from pp collisions

Backup slides

Rapidity Loss

$$y_p$$
 is the beam rapidity

$$\langle y \rangle = \frac{2}{N_{part}} \int_0^{y_p} y \frac{dN_{B-\bar{B}}(y)}{dy} dy$$

Large uncertainties

Weak decays

EPOS 1.61

Centrality Dependence

Minimum Bias vs Central Collisions

EPOS 1.,61