ATLAS Searches for TeV-scale gravity with multi-body final states

Vicki Moeller
On Behalf of the ATLAS Collaboration
NR/HEP Workshop 01/09/2011
TeV-Scale Gravity

• Scenario: large or warped extra dimensions exist into which gravitons can propagate
• Motivation: reduces the effective Planck-scale to something on the order of the Electroweak scale and resolves the hierarchy problem
 – A lower Planck scale (M_D) leads to a stronger gravitational interactions
• At some threshold value M_{TH} above M_D regions of space-time from which nothing can escape classically can form and be detected in ATLAS
• Goal: to set limits on the Planck mass and the number of extra dimensions
Simulated Black Hole Event in ATLAS
The ATLAS Detector
Phenomenology

• TeV-scale gravity interactions are mediated by gravitons and couple to SM particles democratically
• We search for many very active, high invariant mass events in ATLAS
• We aim to take advantage of universality and require a high p_T lepton
• We are hoping to see a new interaction threshold for multi-body final states with leptons
Signal MC Samples

- Samples produced for both rotating and non-rotating black holes (BH) and stringballs (SB) for 2-7 extra dimensions
- Charybdis2
 - Both low and high multiplicity remnants for BHs and SBs
- BlackMax
 - Final burst remnant model for BH (no SBs)
 - High multiplicity remnant states
 - No form factor in the cross-section
 - Brane width = 0
 - Both baryon number and lepton number conserved
- Shower evolution and hadronisation uses Pythia 6.421
 - With the CTEQ6.6 PDF sets
 - M_{BH} is used as the QCD scale
- Charybdis and BlackMax samples are used to guide the analysis and illustrate the potential signal properties:
 - Non-rotating BH sample with $1 \text{ TeV} < M_D < 3 \text{ TeV}$ and $M_{TH} \geq 4 \text{ TeV}$
 - Rotating SB sample with $M_{TH} = 3 \text{ TeV}$, $M_D = 1 \text{ TeV}$ and string coupling $g_S = 0.4$
Monte Carlo Background Samples

• QCD jet events generated with Pythia
 – MRST2007LO* w/modified LO PDF
• Production of top pairs and single top simulated with MC@NLO
 – $m_{\text{top}} = 172.5$ GeV
 – NLO PDF set CTEQ6.6
• Samples of W and Z/γ^* produced with Alpgen
• Di-boson (WW, WZ, ZZ) production simulated with Herwig
• Fragmentation and hadronization for the Alpgen and MC@NLO samples performed with Herwig
 – Jimmy is used for the underlying event
• All samples use a specific ATLAS parameter tune and the ATLAS full GEANT4 detector simulation
ATLAS detection

- For TeV-scale gravity searches in ATLAS, we observe:
 - \(N\) - the number of objects (electrons, photons, muons, jets) passing selections in the final state
 - \(\Sigma |p_T|\) - the scalar sum of the transverse momenta of the objects selected

\[\Sigma p_T \equiv \Sigma_{i=\text{objects}} p_{Ti}\]
Multi-jet Search Strategy

• PYTHIA MC samples are normalized to data in a control region (CR)
 – Signal already excluded in this region by previous short-scale gravity and particle collider experiments

• MC predictions are then extrapolated to the signal region (SR)

• Search for deviation from SM prediction in the jet distributions
Multiplicity and Momenta

- Pythia QCD bg prediction compared to various BH models for 35 pb-1
High Multiplicity Event in ATLAS

6 Jet Event in 7 TeV Collisions
ATLAS Reconstruction

- **Electrons**
 - ATLAS reconstruction algorithm based on calorimeter shower shape, track quality and track matching algorithm
 - Cluster $p_T > 40$ GeV and $|\eta_{cl}| < 2.47$, excluding $1.37 < |\eta_{cl}| < 1.52$
 - Σp_T (other) in $\Delta R < 0.2$ must be $< 0.1 p_T(e)$
 - If $0.2 < \Delta R < 0.4$ between e and jet, electron is vetoed

- In 2011 data-taking LAr barrel calorimeter had in a small “dead” region
 - Inside region up to 30% of the incident jet energy may be lost
 - Should any of the four leading jets with $p_T > 40$ GeV fall into this region, the event is vetoed
 - Loss of signal efficiency of $\sim 15 - 20\%$ for the models considered
 - Electrons incident on this region are removed
More ATLAS Reconstruction

- **Muons**
 - $p_T > 40$ GeV
 - Associated ID track with sufficient hits in the pixel, SCT and TRT
 - Hits in at least 3 precision layers of the muon chambers
 - Σp_T(other) in \(\Delta R < 0.3\) must be < 0.05 $p_T(\mu)$
 - If $\Delta R < 0.4$ between μ and jet, muon is vetoed
 - Tight cuts applied to the origin of the muons relative to the primary vertex
 - Rejects muons from cosmic rays

- **Jets**
 - $p_T > 50$ GeV and $|\eta| < 2.8$
 - Anti-k_t jet clustering algorithm with a radius of 0.4
 - If $\Delta R < 0.2$ between e and jet, jet is rejected
Multi-jet Search Event Selection

• 2 triggers during 2010 running
 – As instantaneous luminosity increased need to maintain constant total trigger output rate
 • Lowest full acceptance trigger threshold increased
 – E_T thresholds of 55 GeV or 95 GeV
 – p_T(leading jet) > 250 GeV
 • To ensure trigger fully efficient

• Primary vertex must have at least 5 tracks with $p_T > 150$ MeV
 – Reduces non-collision background

• Data is divided into 4 regions in $(N_J, \Sigma p_T)$
 – $R_0 : 1.1 < \Sigma p_T < 1.2$ TeV and $N_J < 5$
 – $R_1 : 1.1 < \Sigma p_T < 1.2$ TeV and $N_J \geq 5$
 – $R_2 : \Sigma p_T > 2$ TeV and $N_J < 5$
 – $R_3 : \Sigma p_T > 2$ TeV and $N_J \geq 5$ *SR
Multi-jet Search Results

- No deviation from the SM expectation is observed
- 35 pb\(^{-1}\) of data
- Upper limit on the cross-section \(\times\) acceptance of 0.29pb
 - Final states with at least 4 jets, \(\Sigma p_T(jets) > 2\) TeV

\(\sqrt{s}=7\) TeV
Data \(\int \mathcal{L} d\tau = 35\) pb\(^{-1}\)

\(N_j \geq 5\)
\(N_j < 5\) normalized
Motivation for Including Leptons

• The current analysis is limited by systematic errors
 – PDFs: MC matched to data in the control region, but poorly understood consistency with SM
 – JES/JER not yet very well measured for high \(M_{\text{inv}} \)
 – Errors magnified by extrapolating from control to signal region

• Notably, in the early data sample, we see very few leptons in the signal region
 – So, we are confident that we don't have a signal from any process that involves democratic decay
Same-Sign Dimuon Final States

• A complementary search using 2010 data with a luminosity of 31 pb$^{-1}$

• Events must pass a single muon trigger
 – $p_T(\mu) > 15$ GeV
 – Trigger efficiency is independent of p_T (trigger plateau) for $p_T(\mu) > 20$ GeV

• All signal MC samples generated with BlackMax 2.01 and hadronized with Pythia
 – 0.5 TeV $< M_D < 2$ TeV
 – 2 TeV $< M_{TH} < 5$ TeV
 – 2, 4, and 6 extra dimensions
Dimuon Search Event Selection

- Primary Vertex must have at least 5 tracks
 - Muon candidates must point back to the primary vertex
- Muon spectrometer (MS) tracks are matched to inner detector (ID) tracks
 - $p_T(\mu_{MS})/p_T(\mu_{ID})$ used to reduce the background from π/K decay-in-flight
 - Muon ID track required to have sufficient hits in the pixel, SCT and TRT
- Leading muon
 - $p_T > 20$ GeV
 - Isolated: $\Sigma p_T(\text{other}) \Delta R(\eta,\phi) < 2.0 < 1.8$ GeV
- At least 2 muon candidates passing these selections are required in each event
Dimuon Search Results

- No excess with respect to the SM observed
- Searching for same-sign dimuons means very small SM background

- With larger dataset, can set a better limit by looking for one very high p_T isolated lepton
From (Lack of) Signal to Cross-Sections

- Model-independent exclusion limits are determined on the effective cross section (σ_{eff}) as a function of minimum Σp_T using the CL$_s$ prescription

 \[\sigma_{\text{eff}} = \sigma (pp \rightarrow \ell X) \cdot \varepsilon_{\text{acc}} \cdot \varepsilon_{\text{rec}} \]

 - $\varepsilon_{\text{acc}} \cdot \varepsilon_{\text{rec}}$ varies, depending on the model
 - $63 \pm 6 \%$ for the electron channels considered
 - $30 \pm 4 \%$ for the muon channels considered

 - Acceptance for the muon channel is lower because of lower trigger efficiency and more stringent reconstruction requirements

 - $\varepsilon_{\text{acc}} \cdot \varepsilon_{\text{rec}}$ is lowest for the low multiplicity, low mass states (small values of M_{TH}/M_D, or M_{TH} and M_D) that are theoretically or experimentally disfavoured
Results

- Exclusion contours in the plane of M_D and M_{TH}
 - From counts of data events and background expectations
- Rotating black holes
- 6 extra dimensions
- Black Max
- Only slopes much larger than 1 correspond to physical models
Limiting Systematic Error: What can we measure well?

- We can measure what fraction of the cross-section can be coming from new physics
- We can move out in phase space without burying new physics in theoretical uncertainties
- The current analysis can only be extended by moving the control region to higher mass
- Using the current signal region as the control region for the next step out in mass has a risk of any new physics signal being absorbed into the control sample
Fraction of Events with Leptons

\[
\frac{N_{lep}}{N_{TOT}} = \frac{\sigma_{SM} \cdot R_{lep}^{SM} + \sigma_{sig} \cdot R_{lep}^{sig}}{\sigma_{SM} + \sigma_{sig}}
\]

\[
= R_{lep}^{SM} + \frac{\sigma_{sig}}{\sigma_{SM}} \cdot R_{lep}^{sig} \cdot \frac{1 + \frac{\sigma_{sig}}{\sigma_{SM}}}{1 + \frac{\sigma_{sig}}{\sigma_{SM}}}
\]

• Many of the same theoretical uncertainties are present in both the Monte Carlo and the signal cross-section predictions
 – Taking the ratio cancels a large part of the uncertainty

• These equations do not yet include detector effects
We Can Measure Two Things

• The ratio of the signal cross-section to the standard model cross-section

\[
\frac{N_{lep}}{N_{TOT}} = \frac{R_{lep}^{SM} + \frac{\sigma_{sig}}{\sigma_{SM}} \cdot R_{lep}^{sig}}{1 + \frac{\sigma_{sig}}{\sigma_{SM}}}
\]

for \(R_{lep}^{SM} \approx 0 \), \(= \frac{\sigma_{sig}}{\sigma_{SM}} \cdot R_{lep}^{sig} \)

and for \(\sigma_{sig} \ll \sigma_{SM} \), \(= \frac{\sigma_{sig}}{\sigma_{SM}} \cdot R_{lep}^{sig} \)

• The absolute value of the cross-section for your favorite model, but it will include the luminosity error
Simple Example of Measuring $\sigma_{\text{sig}} / \sigma_{\text{SM}}$

- For $\epsilon=0.400$, $R_{\text{sig,lep}}=6.7\%$, ratio $\sigma_{\text{sig}} / \sigma_{\text{SM}}=0.001$
- The most conservative way to set the limit is to attribute all the leptons we see to signal
- This will increase the best limit on σ_{sig}, but only slightly

$$\frac{N_{\text{lep}}}{N_{\text{TOT}}} = \frac{\sigma_{\text{sig}}}{\sigma_{\text{SM}}} * R_{\text{lep}}$$

$$\sigma_{\text{sig}} = \frac{N_{\text{lep}}}{N_{\text{TOT}}} * \frac{1}{\epsilon * R_{\text{lep}}^{\text{sig}}}$$

$$\frac{\sigma_{\text{sig}}}{\sigma_{\text{SM}}} = 0.001 * \frac{1}{0.400 * 0.067} = 0.03$$
Simple Example of Measuring Absolute σ_{sig}

- The upper limit on the cross-section was **0.34 nb** for an ATLAS note with 232 nb$^{-1}$
- Using the Σp_T and N_{objects} cuts from this early multi-jet search, there are 0 lepton events in the signal region
 - For a 95% CL, the upper bound on 0 is 3.0
- Taking the most pessimistic value for the luminosity error, we can still improve the measurement with the same dataset

\[
\frac{3.0}{N_{TOT} \times \epsilon} = \frac{\sigma_{sig}}{N_{TOT} \times \epsilon} \times R_{lep}^{sig}
\]

\[
\sigma_{sig} = \frac{3.0}{L \times R_{lep}^{sig}}
\]

\[
\sigma_{sig} = \frac{3.0}{232 \times \frac{8}{119}} \approx 0.20 \text{ nb}
\]

Vicki Moeller Cambridge 06/10/2010
Conclusions

• No deviation from the Standard Model has been observed in jets or lepton channels

• In the future, we can set model-independent limits on the fraction of the cross-section due to TeV-Scale gravity interactions
 – We can also use the efficiency and acceptance of a particular signal model to rule out a range of M_D M_{TH} phase space
References

• Search for Microscopic Black Holes in Multi-Jet Final States with the ATLAS Detector at $\sqrt{s} = 7$ TeV
 – ATLAS-CONF-2011-068, 30 April 2011

• Search for strong gravity effects in same-sign dimuon final states
 – ATLAS-CONF-2011-065, 20 April 2011