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Instabilities and rotational symmetries of higher dimensional black holes.

Motivation

Super-String theory is one of the most compelling candidates for a
quantum theory of gravity, and contains gravity in d = 10.

The AdS/CFT correspondence relates a (d− 1)−QFT with a
d−dimensional theory of gravity.

In large extra dimensions scenarios, M2
pl ∼ RnM2+n

phy , and Mphy can
be of the TeV order. Possible creation of micro black holes at the
LHC?

In General Relativity the number of dimensions d is a parameter.
One expects interesting new dynamics in higher dimensions: number
of rotation angles is b(d− 1)/2c.

Given the plethora of new black holes solutions (Blackfold &
Ricardo’s talk), ones needs a selection criteria for possible solutions.

Stability stands as the most natural criteria - unstable solutions
should not be observed in nature!
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Instabilities and rotational symmetries of higher dimensional black holes.

Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d−Schwarzschild - 1/2

In d = 2N + 3, the d−Schwarzschild black hole is given by:

ds2 = −f̃(r)dt2 +
dr2

f̃(r)
+ r2ds2S2N+1 ,

where ds2CPN , J = dA/2 are the metric and Kähler form on CPN ,

f̃(r) = 1− r2Nm /r2N and â runs over the CPN coordinates.

Odd dimensional MP (equal Js) is a ‘deformation’ of the former:

ds2 = −f(r)dt2

H(r)
+
dr2

f(r)
+r2

{
H(r)[dψ + Aâdxâ − Ω(r)dt]2 + ds2CPN

}
,

where f(r) = H(r)− r2Nm /r2N , H(r) = 1 + a2r2Nm /r2N+2 and
Ω(r) = ar2Nm /[r2(N+1)H(r)].
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[dψ + Aâdxâ]2 + ds2CPN

}︸ ︷︷ ︸
ds2

S2N+1

,

where ds2CPN , J = dA/2 are the metric and Kähler form on CPN ,
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H(r)[dψ + Aâdxâ − Ω(r)dt]2 + ds2CPN

}
,

where f(r) = H(r)− r2Nm /r2N , H(r) = 1 + a2r2Nm /r2N+2 and
Ω(r) = ar2Nm /[r2(N+1)H(r)].

4 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d−Schwarzschild - 2/2

d−Schwarzschild Odd dimensional MP (equal Js)

One parameter:

r2N
m =

16πGM

(2N + 1)Ω2N+1
.

Rt × SO[2(N + 1)]
symmetry.

S2N+1 is an Einstein
manifold.

Expand perturbations
according to how they
transform under coordinate
transformations in S2N+1.

Two parameters (rotation):

r2N
m = 16πGM

(2N+1)Ω2N+1
, a = (2N+1)

2(N+1)
J
M

.

Rt × U(1)ψ × SU(N + 1)
symmetry.

CPN is a Kähler-Einstein
manifold.

Expand perturbations according to
how they transform under
coordinate transformations in
CPN .

5 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d−Schwarzschild - 2/2

d−Schwarzschild Odd dimensional MP (equal Js)

One parameter:

r2N
m =

16πGM

(2N + 1)Ω2N+1
.

Rt × SO[2(N + 1)]
symmetry.

S2N+1 is an Einstein
manifold.

Expand perturbations
according to how they
transform under coordinate
transformations in S2N+1.

Two parameters (rotation):

r2N
m = 16πGM

(2N+1)Ω2N+1
, a = (2N+1)

2(N+1)
J
M

.

Rt × U(1)ψ × SU(N + 1)
symmetry.

CPN is a Kähler-Einstein
manifold.

Expand perturbations according to
how they transform under
coordinate transformations in
CPN .

5 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d−Schwarzschild - 2/2

d−Schwarzschild Odd dimensional MP (equal Js)

One parameter:

r2N
m =

16πGM

(2N + 1)Ω2N+1
.

Rt × SO[2(N + 1)]
symmetry.

S2N+1 is an Einstein
manifold.

Expand perturbations
according to how they
transform under coordinate
transformations in S2N+1.

Two parameters (rotation):

r2N
m = 16πGM

(2N+1)Ω2N+1
, a = (2N+1)

2(N+1)
J
M

.

Rt × U(1)ψ × SU(N + 1)
symmetry.

CPN is a Kähler-Einstein
manifold.

Expand perturbations according to
how they transform under
coordinate transformations in
CPN .

5 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d−Schwarzschild - 2/2

d−Schwarzschild Odd dimensional MP (equal Js)

One parameter:

r2N
m =

16πGM

(2N + 1)Ω2N+1
.

Rt × SO[2(N + 1)]
symmetry.

S2N+1 is an Einstein
manifold.

Expand perturbations
according to how they
transform under coordinate
transformations in S2N+1.

Two parameters (rotation):

r2N
m = 16πGM

(2N+1)Ω2N+1
, a = (2N+1)

2(N+1)
J
M

.

Rt × U(1)ψ × SU(N + 1)
symmetry.

CPN is a Kähler-Einstein
manifold.

Expand perturbations according to
how they transform under
coordinate transformations in
CPN .

5 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d−Schwarzschild - 2/2

d−Schwarzschild Odd dimensional MP (equal Js)

One parameter:

r2N
m =

16πGM

(2N + 1)Ω2N+1
.

Rt × SO[2(N + 1)]
symmetry.

S2N+1 is an Einstein
manifold.

Expand perturbations
according to how they
transform under coordinate
transformations in S2N+1.

Two parameters (rotation):

r2N
m = 16πGM

(2N+1)Ω2N+1
, a = (2N+1)

2(N+1)
J
M

.

Rt × U(1)ψ × SU(N + 1)
symmetry.

CPN is a Kähler-Einstein
manifold.

Expand perturbations according to
how they transform under
coordinate transformations in
CPN .

5 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Decomposition theorem in CPN - Scalar Perturbations

Decomposition theorem in CPN - Scalar Perturbations

µ runs over the following non-coordinate base {dt, dr, dψ + A}.

hµν transforms like a scalar, hµâ transforms like a vector and hâb̂
like a tensor.
Since we are in the scalar sector, the building block: charged
Harmonics on CPN

(D2 + λ)S = 0
where Dâ = ∇̂â − imAâ, λ = `(`+ 2N)−m2, ` = 2κ+ |m| and
κ ∈ N.

hµν = fµνS, hµâ = fµ

hâb̂ = HLγâb̂S +HTSâb̂
where γâb̂ is the metric and

Sâb̂ =
(

+
λγâb̂
2N

)
S.
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λγâb̂
2N

)
S.

6 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Decomposition theorem in CPN - Scalar Perturbations

Decomposition theorem in CPN - Scalar Perturbations

µ runs over the following non-coordinate base {dt, dr, dψ + A}.
hµν transforms like a scalar, hµâ transforms like a vector and hâb̂
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like a tensor.
Since we are in the scalar sector, the building block: charged
Harmonics on CPN

(D2 + λ)S = 0
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Why to expect interesting physics?(Dias, Emparan, Figueras, Monteiro and JES)

For N ≥ 2, the following inequality holds:(
a

rm

)
?

=
1

2
N+1
2N

<

(
a

rm

)
ex

=
√
N

(N + 1)
N+1
2N

.

The range in a/rm between the thermodynamic zero mode and
extremality increases with N : expect interesting physics for
sufficiently large N , maybe ultraspinning instability.
We only have PDEs in t and r, and ∂t is Killing, so we can easily
analyse the time dependence of the perturbation by Fourier
expanding it in time (hAB = eΩtĥAB), leading to ODEs in r.
If modes with Ω > 0 are detected, then we undoubtedly have an
unstable asym. flat black hole with compact spatial horizon.
Harmonic expansion on CPN is used to study which symmetries are
broken by the perturbations. For N = 3 (d = 9), the ` = 2 harmonic
breaks all the CP3 symmetries: perturbative black hole saturates
generalisation of Hawking’s rigidity theorem to higher d (Hollands, Ishibashi and

Wald ’06, and Isenberg and Moncrief ’08).
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Results

Stationary case Ω = 0:

κ = 1 appears where predicted

Dispersion relation Ω 6= 0:

κ = 1 is NOT an instability of the MP

8 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Results

Results

Stationary case Ω = 0:
κ = 1 appears where predicted:

Dispersion relation Ω 6= 0:

κ = 1 is NOT an instability of the MP

8 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Results

Results

Stationary case Ω = 0:
κ = 1 appears where predicted & κ = 2 in d = 9 appears too:

Dispersion relation Ω 6= 0:

κ = 1 is NOT an instability of the MP

8 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Results

Results

Stationary case Ω = 0:
κ = 1 appears where predicted & κ = 2 in d = 9 appears too:

Dispersion relation Ω 6= 0:

κ = 1 is NOT an instability of the MP

8 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Results

Results

Stationary case Ω = 0:
κ = 1 appears where predicted & κ = 2 in d = 9 appears too:

Dispersion relation Ω 6= 0:
κ = 1 is NOT an instability of the MP:

8 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Results

Results

Stationary case Ω = 0:
κ = 1 appears where predicted & κ = 2 in d = 9 appears too:

Dispersion relation Ω 6= 0:
κ = 1 is NOT an instability of the MP, but κ = 2 IS:

8 / 10



Instabilities and rotational symmetries of higher dimensional black holes.

Results

Dispersion relation of the equal angular momenta MP

For k = 0, one finds
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Instabilities and rotational symmetries of higher dimensional black holes.

Discussion & Conclusions

Discussion & Conclusions

Conclusions:

Asym. flat black holes can be unstable.
Instabilities often connect different families of black holes.
Blackfold approach gives a generic picture, but merger zone
only with numerics.
Numerical perturbative results useful, but should be confirmed
at the non-linear level.

Future directions:

Consider the time dependence in the single spinning MP
solution (PDEs).
Break transverse sphere in the single spinning MP solution
(saturate Hawking’s rigidity theorem).
Consider a background MP with several angular momenta
turned on.
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