Jorge E. Santos

DAMTP University of Cambridge

In collaboration with O. J. C. Dias (DAMTP), P. Figueras (Durham), R. Monteiro (DAMTP) and H. S. Reall - to appear soon

> II Workshop on Black Holes, IST December 22, 2009

Motivation

- Super-String theory is one of the most compelling candidates for a quantum theory of gravity, and contains gravity in d = 10.
- The AdS/CFT correspondence relates a (d-1)-QFT with a d-dimensional theory of gravity.
- In large extra dimensions scenarios, $M_{pl}^2 \sim R^n M_{phy}^{2+n}$, and M_{phy} can be of the TeV order. Possible creation of micro black holes at the LHC?
- In General Relativity the number of dimensions d is a parameter. One expects interesting new dynamics in higher dimensions: number of rotation angles is $\lfloor (d-1)/2 \rfloor$.

Motivation

- Super-String theory is one of the most compelling candidates for a quantum theory of gravity, and contains gravity in d = 10.
- The AdS/CFT correspondence relates a (d-1)-QFT with a d-dimensional theory of gravity.
- In large extra dimensions scenarios, $M_{pl}^2 \sim R^n M_{phy}^{2+n}$, and M_{phy} can be of the TeV order. Possible creation of micro black holes at the LHC?
- In General Relativity the number of dimensions d is a parameter. One expects interesting new dynamics in higher dimensions: number of rotation angles is $\lfloor (d-1)/2 \rfloor$.
- Given the plethora of new black holes solutions (Blackfold & Ricardo's talk), ones needs a selection criteria for possible solutions.

Motivation

- Super-String theory is one of the most compelling candidates for a quantum theory of gravity, and contains gravity in d = 10.
- The AdS/CFT correspondence relates a (d-1)-QFT with a d-dimensional theory of gravity.
- In large extra dimensions scenarios, $M_{pl}^2 \sim R^n M_{phy}^{2+n}$, and M_{phy} can be of the TeV order. Possible creation of micro black holes at the LHC?
- In General Relativity the number of dimensions d is a parameter. One expects interesting new dynamics in higher dimensions: number of rotation angles is $\lfloor (d-1)/2 \rfloor$.
- Given the plethora of new black holes solutions (Blackfold & Ricardo's talk), ones needs a selection criteria for possible solutions.
- Stability stands as the most natural criteria unstable solutions should not be observed in nature!

Outline

2 Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

3 Why to expect interesting physics?

4 Results

5 Discussion & Conclusions

 \Box Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d-Schwarzschild - 1/2

• In d = 2N + 3, the d-Schwarzschild black hole is given by:

$$ds^{2} = -\tilde{f}(r)dt^{2} + \frac{dr^{2}}{\tilde{f}(r)} + r^{2}ds^{2}_{S^{2N+1}},$$

 \Box Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d-Schwarzschild - 1/2

• In d = 2N + 3, the d-Schwarzschild black hole is given by:

$$ds^{2} = -\tilde{f}(r)dt^{2} + \frac{dr^{2}}{\tilde{f}(r)} + r^{2}\underbrace{\left\{ [d\psi + \mathbb{A}_{\hat{a}}dx^{\hat{a}}]^{2} + ds^{2}_{\mathbb{CP}^{N}} \right\}}_{ds^{2}_{S^{2N+1}}},$$

where $ds_{\mathbb{CP}^N}^2$, $\mathbb{J} = d\mathbb{A}/2$ are the metric and Kähler form on \mathbb{CP}^N , $\tilde{f}(r) = 1 - r_m^{2N}/r^{2N}$ and \hat{a} runs over the \mathbb{CP}^N coordinates.

 \Box Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d-Schwarzschild - 1/2

• In d = 2N + 3, the d-Schwarzschild black hole is given by:

$$ds^{2} = -\tilde{f}(r)dt^{2} + \frac{dr^{2}}{\tilde{f}(r)} + r^{2}\underbrace{\left\{ [d\psi + \mathbb{A}_{\hat{a}}dx^{\hat{a}}]^{2} + ds^{2}_{\mathbb{CP}^{N}} \right\}}_{ds^{2}_{S^{2N+1}}},$$

where $ds_{\mathbb{CP}^N}^2$, $\mathbb{J} = d\mathbb{A}/2$ are the metric and Kähler form on \mathbb{CP}^N , $\tilde{f}(r) = 1 - r_m^{2N}/r^{2N}$ and \hat{a} runs over the \mathbb{CP}^N coordinates.

• Odd dimensional MP (equal Js) is a 'deformation' of the former:

$$ds^2 = -\frac{f(r)dt^2}{H(r)} + \frac{dr^2}{f(r)} + r^2 \left\{ H(r) [d\psi + \mathbb{A}_{\hat{a}} dx^{\hat{a}} - \Omega(r)dt]^2 + \frac{ds_{\mathbb{CP}^N}^2}{ds_{\mathbb{CP}^N}^2} \right\},$$

where $f(r)=H(r)-r_m^{2N}/r^{2N}$, $H(r)=1+a^2r_m^{2N}/r^{2N+2}$ and $\Omega(r)=ar_m^{2N}/[r^{2(N+1)}H(r)].$

 \Box Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d-Schwarzschild - 2/2

d-Schwarzschild	Odd dimensional MP (equal Js)

Odd dimensional MP (equal Js) Vs d-Schwarzschild - 2/2

d-Schwarzschild	Odd dimensional MP (equal J s)
• One parameter:	• Two parameters (rotation):
$r_m^{2N} = \frac{16\pi GM}{(2N+1)\Omega_{2N+1}}.$	$r_m^{2N} = \frac{16\pi GM}{(2N+1)\Omega_{2N+1}}, a = \frac{(2N+1)}{2(N+1)}\frac{J}{M}.$

Odd dimensional MP (equal Js) Vs d-Schwarzschild - 2/2

- $d-{\rm Schwarzschild}$ \bullet One parameter: $r_m^{2N} = \frac{16\pi GM}{(2N+1)\Omega_{2N+1}}. \label{eq:rm}$
 - $\mathbb{R}_t \times SO[2(N+1)]$ symmetry.

Odd dimensional MP (equal Js)

• Two parameters (rotation):

$$r_m^{2N} = \frac{16\pi GM}{(2N+1)\Omega_{2N+1}}, a = \frac{(2N+1)}{2(N+1)} \frac{J}{M}.$$

• $\mathbb{R}_t imes U(1)_\psi imes \frac{SU(N+1)}{Symmetry}$.

Odd dimensional MP (equal Js) Vs d-Schwarzschild - 2/2

- $d-\mathsf{Schwarzschild}$
 - One parameter:

$$r_m^{2N} = \frac{16\pi GM}{(2N+1)\Omega_{2N+1}}$$

- $\mathbb{R}_t \times SO[2(N+1)]$ symmetry.
- S^{2N+1} is an Einstein manifold.

Odd dimensional MP (equal Js)

• Two parameters (rotation):

$$r_m^{2N} = \frac{16\pi GM}{(2N+1)\Omega_{2N+1}}, a = \frac{(2N+1)}{2(N+1)}\frac{J}{M}.$$

- $\mathbb{R}_t imes U(1)_\psi imes \frac{SU(N+1)}{Symmetry.}$
- CP^N is a Kähler-Einstein manifold.

Odd dimensional MP (equal Js) Vs d-Schwarzschild - 2/2

- $d-\mathsf{Schwarzschild}$
 - One parameter:

$$r_m^{2N} = \frac{16\pi GM}{(2N+1)\Omega_{2N+1}}$$

- $\mathbb{R}_t \times SO[2(N+1)]$ symmetry.
- S^{2N+1} is an Einstein manifold.
- Expand perturbations according to how they transform under coordinate transformations in S^{2N+1} .

Odd dimensional MP (equal Js)

• Two parameters (rotation):

$$r_m^{2N} = \frac{16\pi GM}{(2N+1)\Omega_{2N+1}}, a = \frac{(2N+1)}{2(N+1)}\frac{J}{M}.$$

- $\mathbb{R}_t imes U(1)_\psi imes \frac{SU(N+1)}{Symmetry.}$
- CP^N is a Kähler-Einstein manifold.
- Expand perturbations according to how they transform under coordinate transformations in CP^N.

L Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

• μ runs over the following non-coordinate base $\{dt, dr, d\psi + \mathbb{A}\}$.

L Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

- μ runs over the following non-coordinate base $\{dt, dr, d\psi + \mathbb{A}\}$.
- $h_{\mu\nu}$ transforms like a scalar, $h_{\mu\hat{a}}$ transforms like a vector and $h_{\hat{a}\hat{b}}$ like a tensor.

L Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

- μ runs over the following non-coordinate base $\{dt, dr, d\psi + \mathbb{A}\}$.
- $h_{\mu\nu}$ transforms like a scalar, $h_{\mu\hat{a}}$ transforms like a vector and $h_{\hat{a}\hat{b}}$ like a tensor.
- \bullet Since we are in the scalar sector, the building block: charged Harmonics on \mathbb{CP}^N

$$(\mathcal{D}^2 + \lambda)\mathbb{S} = 0$$

where $\mathcal{D}_{\hat{a}} = \hat{\nabla}_{\hat{a}} - im\mathbb{A}_{\hat{a}}$, $\lambda = \ell(\ell + 2N) - m^2$, $\ell = 2\kappa + |m|$ and $\kappa \in \mathbb{N}$.

L Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

- μ runs over the following non-coordinate base $\{dt, dr, d\psi + \mathbb{A}\}$.
- $h_{\mu\nu}$ transforms like a scalar, $h_{\mu\hat{a}}$ transforms like a vector and $h_{\hat{a}\hat{b}}$ like a tensor.
- \bullet Since we are in the scalar sector, the building block: charged Harmonics on \mathbb{CP}^N

$$(\mathcal{D}^2 + \lambda)\mathbb{S} = 0$$

where $\mathcal{D}_{\hat{a}} = \hat{\nabla}_{\hat{a}} - im\mathbb{A}_{\hat{a}}$, $\lambda = \ell(\ell + 2N) - m^2$, $\ell = 2\kappa + |m|$ and $\kappa \in \mathbb{N}$.

• Einstein Manifold (e.g. d-Schwarzschild)

$$h_{\mu\nu} = f_{\mu\nu}\mathbb{S}, \qquad \qquad h_{\mu\hat{a}} = f_{\mu}\hat{\nabla}_{\hat{a}}\mathbb{S}$$

$$h_{\hat{a}\hat{b}} = H_L \gamma_{\hat{a}\hat{b}} \mathbb{S} + H_T \mathbb{S}_{\hat{a}\hat{b}},$$

where $\gamma_{\hat{a}\hat{b}}$ is the S^{2N+1} metric and

$$\mathbb{S}_{\hat{a}\hat{b}} = \left(\hat{\nabla}_{\hat{a}}\hat{\nabla}_{\hat{b}} + \frac{\lambda\gamma_{\hat{a}\hat{b}}}{2N}
ight)\mathbb{S}.$$

L Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

- μ runs over the following non-coordinate base $\{dt, dr, d\psi + \mathbb{A}\}$.
- $h_{\mu\nu}$ transforms like a scalar, $h_{\mu\hat{a}}$ transforms like a vector and $h_{\hat{a}\hat{b}}$ like a tensor.
- \bullet Since we are in the scalar sector, the building block: charged Harmonics on \mathbb{CP}^N

$$(\mathcal{D}^2 + \lambda)\mathbb{S} = 0$$

where $\mathcal{D}_{\hat{a}} = \hat{\nabla}_{\hat{a}} - im\mathbb{A}_{\hat{a}}$, $\lambda = \ell(\ell + 2N) - m^2$, $\ell = 2\kappa + |m|$ and $\kappa \in \mathbb{N}$.

• Einstein-Kähler Manifold (e.g. Odd dimensional MP)

$$h_{\mu\nu} = f_{\mu\nu} \mathbb{S}, \qquad \qquad h_{\mu\hat{a}} = f_{\mu} \mathcal{D}_{\hat{a}} \mathbb{S}$$

 $h_{\hat{a}\hat{b}} = H_L \gamma_{\hat{a}\hat{b}} \mathbb{S} + H_T \mathbb{S}_{\hat{a}\hat{b}},$

where $\gamma_{\hat{a}\hat{b}}$ is the \mathbb{CP}^N metric and

$$\mathbb{S}_{\hat{a}\hat{b}} = \left(\mathcal{D}_{\hat{a}}\mathcal{D}_{\hat{b}} + \frac{\lambda\gamma_{\hat{a}\hat{b}}}{2N}\right)\mathbb{S}.$$

L Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

Decomposition theorem in \mathbb{CP}^N - Scalar Perturbations

- μ runs over the following non-coordinate base $\{dt, dr, d\psi + \mathbb{A}\}$.
- $h_{\mu\nu}$ transforms like a scalar, $h_{\mu\hat{a}}$ transforms like a vector and $h_{\hat{a}\hat{b}}$ like a tensor.
- \bullet Since we are in the scalar sector, the building block: charged Harmonics on \mathbb{CP}^N

$$(\mathcal{D}^2 + \lambda)\mathbb{S} = 0$$

where $\mathcal{D}_{\hat{a}} = \hat{\nabla}_{\hat{a}} - im\mathbb{A}_{\hat{a}}$, $\lambda = \ell(\ell + 2N) - m^2$, $\ell = 2\kappa + |m|$ and $\kappa \in \mathbb{N}$.

• Einstein-Kähler Manifold (*e.g.* Odd dimensional MP)

$$h_{\mu\nu} = f_{\mu\nu}\mathbb{S}, \qquad \qquad h_{\mu\hat{a}} = f_{\mu}\mathcal{D}_{\hat{a}}\mathbb{S} + \tilde{f}_{\mu}\mathbb{J}_{\hat{a}}^{\ b}\mathcal{D}_{\hat{b}}\mathbb{S}$$

$$h_{\hat{a}\hat{b}} = H_L \gamma_{\hat{a}\hat{b}} \mathbb{S} + H_T \mathbb{S}_{\hat{a}\hat{b}} + P \mathbb{J}_{\hat{a}}{}^{\hat{c}} \mathbb{J}_{\hat{b}}{}^{\hat{d}} \mathcal{D}_{\hat{c}} \mathcal{D}_{\hat{d}} \mathbb{S} + Q \mathbb{J}_{(\hat{a}}{}^{\hat{c}} \mathcal{D}_{|\hat{c}|} \mathcal{D}_{\hat{b}}) \mathbb{S},$$

where $\gamma_{\hat{a}\hat{b}}$ is the \mathbb{CP}^N metric and

$$\mathbb{S}_{\hat{a}\hat{b}} = \left(\mathcal{D}_{\hat{a}}\mathcal{D}_{\hat{b}} + \frac{\lambda\gamma_{\hat{a}\hat{b}}}{2N}\right)\mathbb{S}.$$

Why to expect interesting physics?

Why to expect interesting physics? (Dias, Emparan, Figueras, Monteiro and JES)

$$\left(\frac{a}{r_m}\right)_{\star} = \frac{1}{2^{\frac{N+1}{2N}}} < \left(\frac{a}{r_m}\right)_{\rm ex} = \frac{\sqrt{N}}{(N+1)^{\frac{N+1}{2N}}}.$$

Why to expect interesting physics?

Why to expect interesting physics? (Dias, Emparan, Figueras, Monteiro and JES)

• For $N \ge 2$, the following inequality holds:

$$\left(\frac{a}{r_m}\right)_{\star} = \frac{1}{2^{\frac{N+1}{2N}}} < \left(\frac{a}{r_m}\right)_{\rm ex} = \frac{\sqrt{N}}{(N+1)^{\frac{N+1}{2N}}}.$$

• The range in a/r_m between the thermodynamic zero mode and extremality increases with N: expect interesting physics for sufficiently large N, maybe ultraspinning instability.

Why to expect interesting physics?

Why to expect interesting physics? (Dias, Emparan, Figueras, Monteiro and JES)

$$\left(\frac{a}{r_m}\right)_{\star} = \frac{1}{2^{\frac{N+1}{2N}}} < \left(\frac{a}{r_m}\right)_{\rm ex} = \frac{\sqrt{N}}{(N+1)^{\frac{N+1}{2N}}}.$$

- The range in a/r_m between the thermodynamic zero mode and extremality increases with N: expect interesting physics for sufficiently large N, maybe ultraspinning instability.
- We only have PDEs in t and r, and ∂_t is Killing, so we can easily analyse the time dependence of the perturbation by Fourier expanding it in time $(h_{AB} = e^{\Omega t} \hat{h}_{AB})$, leading to ODEs in r.

Why to expect interesting physics?

Why to expect interesting physics? (Dias, Emparan, Figueras, Monteiro and JES)

$$\left(\frac{a}{r_m}\right)_{\star} = \frac{1}{2^{\frac{N+1}{2N}}} < \left(\frac{a}{r_m}\right)_{\rm ex} = \frac{\sqrt{N}}{(N+1)^{\frac{N+1}{2N}}}.$$

- The range in a/r_m between the thermodynamic zero mode and extremality increases with N: expect interesting physics for sufficiently large N, maybe ultraspinning instability.
- We only have PDEs in t and r, and ∂_t is Killing, so we can easily analyse the time dependence of the perturbation by Fourier expanding it in time $(h_{AB} = e^{\Omega t} \hat{h}_{AB})$, leading to ODEs in r.
- If modes with $\Omega > 0$ are detected, then we undoubtedly have an unstable asym. flat black hole with compact spatial horizon.

Why to expect interesting physics?

Why to expect interesting physics? (Dias, Emparan, Figueras, Monteiro and JES)

$$\left(\frac{a}{r_m}\right)_{\star} = \frac{1}{2^{\frac{N+1}{2N}}} < \left(\frac{a}{r_m}\right)_{\mathrm{ex}} = \frac{\sqrt{N}}{(N+1)^{\frac{N+1}{2N}}}.$$

- The range in a/r_m between the thermodynamic zero mode and extremality increases with N: expect interesting physics for sufficiently large N, maybe ultraspinning instability.
- We only have PDEs in t and r, and ∂_t is Killing, so we can easily analyse the time dependence of the perturbation by Fourier expanding it in time $(h_{AB} = e^{\Omega t} \hat{h}_{AB})$, leading to ODEs in r.
- If modes with $\Omega > 0$ are detected, then we undoubtedly have an unstable asym. flat black hole with compact spatial horizon.
- Harmonic expansion on CP^N is used to study which symmetries are broken by the perturbations. For N = 3 (d = 9), the ℓ = 2 harmonic breaks all the CP³ symmetries: perturbative black hole saturates generalisation of Hawking's rigidity theorem to higher d (Hollands, Ishibashi and

Instabilities and rotational symmetries of higher dimensional black holes.

Results

• Stationary case $\Omega = 0$:

Instabilities and rotational symmetries of higher dimensional black holes.

Results

- Stationary case $\Omega = 0$:
 - $\kappa = 1$ appears where predicted:

Instabilities and rotational symmetries of higher dimensional black holes.

Results

- Stationary case $\Omega = 0$:
 - $\kappa = 1$ appears where predicted & $\kappa = 2$ in d = 9 appears too:

Instabilities and rotational symmetries of higher dimensional black holes.

Results

- Stationary case $\Omega = 0$:
 - $\kappa = 1$ appears where predicted & $\kappa = 2$ in d = 9 appears too:

Instabilities and rotational symmetries of higher dimensional black holes.

L Results

- Stationary case $\Omega = 0$:
 - $\kappa = 1$ appears where predicted & $\kappa = 2$ in d = 9 appears too:

0.6870 0.6875

0.6865

a/rm

Instabilities and rotational symmetries of higher dimensional black holes.

L Results

• Stationary case $\Omega = 0$:

0.005

0.000

= 0.6058

1.0 k.rm 1.5

• $\kappa = 1$ appears where predicted & $\kappa = 2$ in d = 9 appears too:

- 0.686

2 k /m

<u>a</u> = 0.6861 0.01

0.00

Instabilities and rotational symmetries of higher dimensional black holes.

Dispersion relation of the equal angular momenta MP

• For k = 0, one finds

Discussion & Conclusions

Discussion & Conclusions

- Conclusions:
 - Asym. flat black holes can be unstable.
 - Instabilities often connect different families of black holes.
 - Blackfold approach gives a generic picture, but merger zone only with numerics.
 - Numerical perturbative results useful, but should be confirmed at the non-linear level.

Discussion & Conclusions

Discussion & Conclusions

- Conclusions:
 - Asym. flat black holes can be unstable.
 - Instabilities often connect different families of black holes.
 - Blackfold approach gives a generic picture, but merger zone only with numerics.
 - Numerical perturbative results useful, but should be confirmed at the non-linear level.

- Future directions:
 - Consider the time dependence in the single spinning MP solution (PDEs).
 - Break transverse sphere in the single spinning MP solution (saturate Hawking's rigidity theorem).
 - Consider a background MP with several angular momenta turned on.