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Motivation

Context And Goal

The suggestive ‘membrane paradigm’ [Thorne, Macdonald, Price ’86; Cardoso, Dias, Gualtieri ’07]

hints at a connection between black holes (BH) and hydrodynamics:
horizons are associated with membranes with dissipative properties (electrical
resistivity, shear viscosity, etc.).

The fluid-gravity correspondence [Bhattacharyya, Hubeny, Minwalla, Rangamani ’07] provides a
precise duality wherein the dissipative fluid lives on the boundary of AdS in
which the BH is placed.

In this talk we will be interested in fluid/plasma configurations in 2+1 dims, with
the aim of determining the phase structure of BHs in 4+1 dims (in some specific
background).
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Motivation

Context And Goal

Gauge theories displaying a confinement/deconfinement phase transition can, at
temperatures near the critical temperature Tc , present regions of (deconfined)
plasma immersed in a ‘sea’ of confined vacuum. [Aharony, Minwalla, Wiseman ’05]

Known stationary plasma configurations include plasma balls and plasma rings
(both thin and fat). [Lahiri, Minwalla ’07]

What happens if we spin up these plasma lumps?

In the non-relativistic regime,
droplets have been observed to
acquire lobes when spinning above
a critical rotation. [Hill, Eaves ’08]
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Motivation

Context And Goal

The phase diagram (at fixed energy) for axisymmetric rotating lumps of plasma
in 3d is known. [Lahiri, Minwalla ’07]

J

S

Bifurcation of plasma balls to m-lobed plasmas has been studied recently by
looking for an instability. [Cardoso, Dias ’09]

Above a critical rotation plasma balls become unstable to non-axisymmetric
perturbations.

increasing spin
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The Fluid-Gravity Correspondence

Fluid Dynamics From Gravity [Bhattacharyya, Hubeny, Minwalla, Rangamani ’07]

Consider a boosted black brane in AdSd+1 (in
Eddington-Finkelstein coords), parametrized by
temperature b ∝ T and boosts βi .

Next, allow the parameters to vary along the
boundary coordinates,

b = b(xµ) , βi = βi(xµ)

BH horizon

AdS boundary

Tube approximating
black brane metric

Metric with non-constant {b, βi} is generically not a solution of Einstein’s eqs.
But if variation is slow (with lengthscale ∼ L) then it is a good approximation to a
solution and we may consider a perturbative expansion:

g = g(0)(b, βi) + εg(1)(b, βi) + ε2g(2)(b, βi) +O(ε3)

Each power of ε corresponds to a suppression by ∼ 1/(T L).
Einstein’s eqs can now be solved perturbatively to determine the bulk solution.
At each order n of perturbation, a subset of Einstein’s equations are constraint
equations — these turn out to be the boundary fluid dynamics equations:

∇µT µν
(n) = 0
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The Fluid-Gravity Correspondence

The Boundary Stress Tensor

Once the bulk solution is known one can compute the boundary stress tensor in
the vein of AdS/CFT, following [Balasubramanian, Kraus ’99].

The result, at a given order of perturbation, determines the transport coefficients
at that order.

Example

For the N = 4, SU(N) SYM (conformal) fluid in d dimensions,

T µν = αT d(gµν + duµuν)︸ ︷︷ ︸
ideal fluid (0th order)

− 2 η σµν︸ ︷︷ ︸
dissipative part (1st order)

+ . . .

where α = πd

16πG(d+1)
N

and the shear viscosity is η = π
8 N2T 3. [Policastro, Son, Starinets ’01]

uµ −→ velocity field of the fluid; σµν −→ shear tensor (∼ ∇u).

The perturbative expansion in the bulk is in correspondence with the derivative
expansion of the boundary stress tensor.
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The Scherk-Schwarz System

Approaching a Gravity/QCD Duality

The simplest instance of gauge/gravity duality relates

IIB string theory on AdS5 × S5 ←→ 4d N = 4 SU(N) SYM

The latter (a) is conformal, (b) is SUSY, (c) does not exhibit confinement.
Very different from QCD. . .

However, a Scherk-Schwarz (SS) compactification on a S1 of a 4d CFT is
non-conformal, non-SUSY and exhibits a confinement/deconfinement phase
transition at some temperature Tc .
Low energy dynamics is effectively 3d .

There are 2 candidate bulk
geometries dual to the boundary
field theory.
The two geometries compete to
minimize the free energy.
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The Scherk-Schwarz System

Plasma Lumps

Near Tc both phases can coexist in different regions of spacetime, separated by
domain walls. On the boundary, this corresponds to a bubble of deconfined
plasma immersed in a confined phase.
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AdS boundary

Plasma ball

Confined phase

Domain wall
The surface tension of the domain wall is
σ ∼ π2 N2 T 2

c . [Aharony, Minwalla, Wiseman ’05]

IR cap offIR cap off

SS circle
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The Scherk-Schwarz System

Dual Theories And The Equation Of State

The complete duality chart is as follows:

SS-AdS       gravity              d+2

(d+1)-dim SS gauge theory

Hydrodynamics of a d-dim 
    non-conformal plasma

The SS-AdS5 system is dual to 3d fluid dynamics with an equation of state
describing the SS plasma:

P =
ρ− 4ρ0

3
, s = 4α

1
4

(ρ− ρ0

3

) 3
4
, T =

(ρ− ρ0

3α

) 1
4

with α = π2N2

8Tc
and ρ0 = αT 4

c being constants. [Lahiri, Minwalla ’07]
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Axisymmetric Plasma Configurations

Stationarity => Rigid Rotation

Consider a fluid in a 3d Minkowski background with coordinates {t , r , φ}.

stationary configuration ⇒ no dissipation

It can be shown that the velocity field must be a linear combination of the
background Killing vector fields ξ = ∂t and χ = ∂φ: [Caldarelli, Dias, Emparan, Klemm ’08]

u = γ (ξ + Ωχ) =
1√

1− r 2Ω2
(∂t + Ω∂φ)

i.e., the plasma must be rigidly rotating, with angular velocity Ω.

The Young-Laplace equation (surface term of ∇µT µν = 0) reduces to

P< − P> = σK

where K is the trace of the extrinsic curvature of the plasma’s surface.

For the SS plasma in equilibrium the pressure is determined by the equation of
state:

P =
ρ∗
3
γ4 − ρ0

where ρ∗ ≡ 3αT 4 is a constant.
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Axisymmetric Plasma Configurations

Plasma Balls And Plasma Rings

Plasma balls have a single axisymmetric outer surface at r = Ro and P> = 0.
Plasma rings have also an axisymmetric inner surface at r = Ri (where P< = 0).
It is convenient to use dimensionless variables:

Ω̃ =
σΩ

ρ0
, r̃ =

ρ0r
σ
, v = Ωr = Ω̃r̃ , k =

ρ∗
3ρ0

For plasma balls, the Young-Laplace equation reduces to the condition:(
1 +

Ω̃

vo

)(
1− v2

o

)2
= k , with 0 ≤ vo ≤ 1

Similarly, plasma rings must satisfy(
1 +

Ω̃

vo

)(
1− v2

o

)2
=

(
1− Ω̃

vi

)(
1− v2

i

)2

Thus, plasma rings exist only for large enough rotations, vo ≥ v∗o .
There are two families of plasma rings: – the fat ring (Ω̃ ≤ vi ≤ v∗i )

– the thin ring (v∗i ≤ vi ≤ 1)
At vi = v∗i the two families meet at a regular solution.
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Axisymmetric Plasma Configurations

Conserved Charges

Introduce dimensionless thermodynamic quantities:

Ẽ =
ρ0E
πσ2 , J̃ =

ρ2
0J
πσ3 , S̃ =

ρ
5/4
0 S

πα1/4σ2 , T̃ = T
(
α

ρ0

)1/4

The energy, angular momentum and entropy of plasma rings are given by

Ẽ =
4(v2

o − v2
i )− (v4

o − v4
i ) + 5Ω̃(vo + vi)− Ω̃(v3

o + v3
i )

Ω̃2

J̃ =
2(v4

o − v4
i ) + 2Ω̃(v3

o + v3
i )

Ω̃3

S̃ =
4
Ω̃2

v2
o

√
1− v2

o

(
1 +

Ω̃

vo

)3/4

− v2
i

√
1− v2

i

(
1− Ω̃

vi

)3/4


For plasma balls just set vi = 0.
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Non-axisymmetric Plasma Configurations

The Profile Equation

Ansatz for the surface of the plasma adapted to rigid rotation:

f (t , r , φ) ≡ r − R(t − φ/Ω) = 0

Introduce dimensionless quantities:

ψ = φ− Ωt , vo(ψ) = ΩR(x) , v ′o(ψ) = R′(x)

Young-Laplace determines the equation for the profile of an m-lobed plasma:

vov ′′o (1− v2
o )− v ′ 2

o (2− v2
o )− v2

o[
v2

o + v ′ 2
o (1− v2

o )
]3/2 +

1
Ω̃

[
k(1− v2

o )−2 − 1
]

= 0

The profile equation can be solved numerically:
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Non-axisymmetric Plasma Configurations

The Plasma Peanut Branch In The Phase Diagram

Given a profile vo(ψ), the configuration’s charges can be found by certain
integrals over ψ, e.g.

Ẽ =
1

2πΩ̃2

∫ 2π

0
dψ

[
v2

o + k
v2

o (3− v2
o )

(1− v2
o )2

+ 2Ω̃
v2

o + v ′2o√
v2

o + v ′2o (1− v2
o )

]

Focus on m = 2 lobes, i.e., configurations with periodicity ψ ∼ ψ + π. These are
plasma peanuts.

Fixing the energy (Ẽ = 40) one determines the phase diagrams S̃(J̃), Ω̃(J̃):
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Non-axisymmetric Plasma Configurations

Lobed Plasmas As Perturbations Of Plasma Balls

Consider a small non-axisymmetric perturbation of the plasma ball:

vo(ψ) = v̂o

[
1 + ε ν(ψ) +O(ε2)

]
, Ω̃ = Ω̂+εω+O(ε2) , k = k̂+εκ+O(ε2)

Next, linearize the Young-Laplace equation. The solution becomes oscillatory,

ν′′ + m2ν = ∆ (we are interested in m = 2)

The conserved charges may also be computed perturbatively:

Ẽ = Ẽball + O(ε) , J̃ = J̃ball + O(ε) , S̃ = S̃ball + O(ε)

The slope, at the bifurcation point, of the plasma peanut curve is(
∂S̃

∂J̃

)peanut

Ẽ

= lim
ε→0

(
∂S̃
∂ε

)
Ẽ(

∂J̃
∂ε

)
Ẽ

= − 4v̂3
o(

3− 4v̂2
o
)1/4 [

(1− v̂2
o )(3− 11v̂2

o + 4v̂4
o )
]3/4

At the bifurcation point, v̂o ' 0.378 (⇐⇒ Ω̂ ' 0.14), we obtain ∂S̃/∂J̃ ' −0.142.
Numerically we find ∂S̃/∂J̃ ∼ −0.149.
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Non-axisymmetric Plasma Configurations

What About Plasma Rings With Lobes?

Is it possible to have m-lobed plasma rings?

A similar analysis excludes this possibility (the plasma ring condition can only be
met for vi ≥ vo).

A lobed plasma ring branch emerging perturbatively from the axisymmetric
plasma rings is ruled out.

Plasma rings can accommodate higher angular momentum by growing larger
and thinner. Plasma balls have to break axial symmetry to keep energy fixed.
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Discussion

Discussion

The phase diagram for stationary plasma configurations in 3d yields the phase
structure of the dual SS-AdS5 BHs. Nevertheless, there are striking similarities
with the phase diagram for 5d stationary, asymptotically flat BHs.

127

32

j

1

2 2

aH

[from Emparan, Reall ’08]

m-lobed plasma balls are dual to rotating m-lobed BHs.
These cannot be stationary – they have a quadrupole moment and so radiate
away their lobed deformations. What’s going on?

Presently, the fluid-gravity correspondence does not capture gravitational
interactions and radiation.
Rotating m-lobed BHs dual to m-lobed plasma balls are necessarily long-lived.
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Outlook

Open Problems

It would be desirable to improve the fluid-gravity correspondence in order to
accommodate gravitational interactions and gravitational radiation.

Given the similarities between the phase diagram of SS AdS and asymptotically
flat BHs it is natural to ask:

Is the m-lobed instability also present in Myers-Perry(–AdS) black holes?

Fluids in d > 3 dimensions feature pinched plasma balls — these are in
correspondence with the ultra-spinning instability of black holes in D > 5
dimensions. But for d > 3 the m-lobed instability is also present.

Which one becomes active first?

One can argue that it is the m-lobed instability that appears at lower rotations.
It may be possible to verify this, taking into account the recent results of
[Dias, Figueras, Monteiro, Santos, Emparan ’09].
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