Motion of gyroscopes around Schwarzschild and Kerr BH - exact gravito-electromagnetic analogies

Luís Filipe P. O. Costa, Carlos A. R. Herdeiro

Centro de Física do Porto, Universidade do Porto - Portugal
II International Black Holes Workshop, Lisbon

Introduction

- It is known, since the works of Mathisson and Papapetrou that spinning particles follow worldlines which are not geodesics;
- In linearized theory, the gravitational force exerted on a spinning pole-dipole test particle (hereafter a gyroscope) takes a form: $\vec{F}_{G}=\nabla\left(\vec{B}_{G} . \vec{S}\right)$ similar to the electromagnetic force on a magnetic dipole (Wald 1972).
- But only if the gyroscope is at "rest" in a stationary, weak field!
- This analogy may be cast in an exact form (Natário, 2007) using the "Quasi-Maxwell" formalism, which holds if the gyroscope's 4-velocity is a Killing vector of a stationary spacetime.

Introduction

- It is known, since the works of Mathisson and Papapetrou that spinning particles follow worldlines which are not geodesics;
- In linearized theory, the gravitational force exerted on a spinning pole-dipole test particle (hereafter a gyroscope) takes a form: $\vec{F}_{G}=\nabla\left(\vec{B}_{G} . \vec{S}\right)$ similar to the electromagnetic force on a magnetic dipole (Wald 1972).
- But only if the gyroscope is at "rest" in a stationary, weak field!
- This analogy may be cast in an exact form (Natário, 2007) using the "Quasi-Maxwell" formalism, which holds if the gyroscope's 4 -velocity is a Killing vector of a stationary spacetime.
- There is an exact, covariant and fully general analogy relating the two forces, which is made explicit in the tidal tensor formalism (Costa \& Herdeiro 2008).
- We will exemplify how this analogy provides new intuition for the understanding of spin curvature coupling.

Force on Magnetic Dipole

$$
F_{E M}^{\alpha}=\frac{D P^{\alpha}}{d \tau}=\frac{1}{2} F_{\mu \nu}^{; \alpha} Q^{\mu \nu}
$$

- $F_{\mu \nu} \equiv$ Maxwell tensor
- $Q_{\mu \nu} \equiv$ dipole moment tensor

$$
Q^{\mu \nu}=\left[\begin{array}{cccc}
0 & -d^{x} & -d^{y} & -d^{z} \\
d^{x} & 0 & \mu^{z} & -\mu^{y} \\
d^{y} & -\mu^{z} & 0 & \mu^{x} \\
d^{z} & \mu^{y} & -\mu^{x} & 0
\end{array}\right]
$$

Force on Magnetic Dipole

$$
F_{E M}^{\alpha}=\frac{D P^{\alpha}}{d \tau}=\frac{1}{2} F_{\mu \nu}^{; \alpha} Q^{\mu \nu}
$$

- $F_{\mu \nu} \equiv$ Maxwell tensor
- $Q_{\mu \nu} \equiv$ dipole moment tensor

$$
Q^{\mu \nu}=\left[\begin{array}{cccc}
0 & -d^{x} & -d^{y} & -d^{z} \\
d^{x} & 0 & \mu^{z} & -\mu^{y} \\
d^{y} & -\mu^{z} & 0 & \mu^{x} \\
d^{z} & \mu^{y} & -\mu^{x} & 0
\end{array}\right]
$$

- In Relativity, electric and magnetic dipole moments do not exist as independent entities;
- \vec{d} and $\vec{\mu}$ are the time and space components of the dipole moment 2-Form.

Force on Magnetic Dipole

$$
F_{E M}^{\alpha}=\frac{D P^{\alpha}}{d \tau}=\frac{1}{2} F_{\mu \nu}^{; \alpha} Q^{\mu \nu}
$$

- $F_{\mu \nu} \equiv$ Maxwell tensor
- $Q_{\mu \nu} \equiv$ dipole moment tensor
- For a magnetic dipole ($\vec{d}=0$ in its proper frame):

$$
Q^{\mu \nu}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & \mu^{z} & -\mu^{y} \\
0 & -\mu^{z} & 0 & \mu^{x} \\
0 & \mu^{y} & -\mu^{x} & 0
\end{array}\right]=\sigma S^{\mu \nu}
$$

Force on Magnetic Dipole

$$
F_{E M}^{\alpha}=\frac{D P^{\alpha}}{d \tau}=\frac{1}{2} F_{\mu \nu}^{; \alpha} Q^{\mu \nu}
$$

- $F_{\mu \nu} \equiv$ Maxwell tensor
- $Q_{\mu \nu} \equiv$ dipole moment tensor
- For a magnetic dipole ($\vec{d}=0$ in its proper frame):

$$
Q^{\mu \nu}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & \mu^{z} & -\mu^{y} \\
0 & -\mu^{z} & 0 & \mu^{x} \\
0 & \mu^{y} & -\mu^{x} & 0
\end{array}\right]=\sigma S^{\mu \nu}
$$

- $S^{\mu \nu} \equiv$ Spin tensor;
- $\sigma \equiv$ gyromagnetic ratio ($=q / 2 m$ for classical spin)

$$
F_{E M}^{\alpha}=\frac{D P^{\alpha}}{d \tau}=\frac{1}{2} \sigma F_{\mu \nu}^{; \alpha} S^{\mu \nu}
$$

Force on Magnetic Dipole

$$
F_{E M}^{\alpha}=\frac{D P^{\alpha}}{d \tau}=\frac{1}{2} \sigma F_{\mu \nu}^{\alpha} S^{\mu \nu}
$$

- If Pirani supplementary condition $S^{\mu \nu} U_{\nu}=0$ holds, then $S^{\mu \nu}=\epsilon^{\mu \nu \tau \lambda} S_{\tau} U_{\lambda}$
- $S^{\alpha} \equiv$ spin 4-vector; defined as the vector that, in the particle's proper frame, $S^{\alpha}=(0, \vec{S})$

Force on Magnetic Dipole

$$
F_{E M}^{\alpha}=\frac{D P^{\alpha}}{d \tau}=\frac{1}{2} \sigma F_{\mu \nu}^{; \alpha} S^{\mu \nu}
$$

- If Pirani supplementary condition $S^{\mu \nu} U_{\nu}=0$ holds, then $S^{\mu \nu}=\epsilon^{\mu \nu \tau \lambda} S_{\tau} U_{\lambda}$
- $S^{\alpha} \equiv$ spin 4-vector; defined as the vector that, in the particle's proper frame, $S^{\alpha}=(0, \vec{S})$

$$
F_{E M}^{\alpha}=\frac{D P^{\alpha}}{d \tau}=\sigma \epsilon_{\mu \nu}^{\tau \lambda} F^{\mu \nu ; \alpha} U_{\lambda} S_{\tau}=\sigma B_{\beta}^{\alpha} S^{\beta}
$$

Force on Magnetic Dipole

$$
F_{E M}^{\alpha}=\frac{D P^{\alpha}}{d \tau}=\frac{1}{2} \sigma F_{\mu \nu}^{; \alpha} S^{\mu \nu}
$$

- If Pirani supplementary condition $S^{\mu \nu} U_{\nu}=0$ holds, then $S^{\mu \nu}=\epsilon^{\mu \nu \tau \lambda} S_{\tau} U_{\lambda}$
- $S^{\alpha} \equiv$ spin 4-vector; defined as the vector that, in the particle's proper frame, $S^{\alpha}=(0, \vec{S})$

$$
F_{E M}^{\alpha}=\frac{D P^{\alpha}}{d \tau}=\sigma \epsilon_{\mu \nu}^{\tau \lambda} F^{\mu \nu ; \alpha} U_{\lambda} S_{\tau}=\sigma B_{\beta}^{\alpha} S^{\beta}
$$

- $B_{\alpha \beta} \equiv \star F_{\alpha \gamma ; \beta} U^{\gamma} \equiv$ magnetic tidal tensor
- Measures the tidal effects produced by the magnetic field $B^{\alpha}=\star F_{\gamma}^{\alpha} U^{\gamma}$ seen by the dipole of 4-velocity U^{γ}.

Force on Magnetic Dipole

$$
F_{E M}^{\alpha}=\sigma B_{\beta}^{\alpha} S^{\beta}
$$

- Covariant generalization of the usual 3-D expression (valid only in a frame where the dipole is at rest!):

$$
\vec{F}_{E M}=\nabla(\vec{\mu} \cdot \vec{B})
$$

- Yields the force exerted on a magnetic dipole moving with arbitrary velocity.

Force on Gyroscope

Papapetrou equation:

$$
F_{G}^{\alpha} \equiv \frac{D P^{\alpha}}{D \tau}=-\frac{1}{2} R_{\beta \mu \nu}^{\alpha} U^{\beta} S^{\mu \nu}
$$

Force on Gyroscope

Papapetrou equation:

$$
F_{G}^{\alpha} \equiv \frac{D P^{\alpha}}{D \tau}=-\frac{1}{2} R_{\beta \mu \nu}^{\alpha} U^{\beta} S^{\mu \nu}
$$

- If Pirani supplementary condition $S^{\mu \nu} U_{\nu}=0$ holds, then $S^{\mu \nu}=\epsilon^{\mu \nu \tau \lambda} S_{\tau} U_{\lambda}$

$$
\frac{D P^{\alpha}}{D \tau}=\frac{1}{2} \epsilon_{\mu \nu}^{\tau \lambda} R^{\mu \nu \alpha \beta} U_{\lambda} U_{\beta} S_{\tau}=-\mathbb{H}_{\beta}^{\alpha} S^{\beta}
$$

- $\mathbb{H}_{\alpha \beta} \equiv " M a g n e t i c$ part of the Riemann tensor"

Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the gravitational force causing the non-geodesic motion of a spinning test particle are analogous tidal effects:

- Electromagnetic Force on a Magnetic Dipole (Covariant form for $\vec{F}_{E M}=\nabla(\vec{\mu} \cdot \vec{B})$)

$$
F_{E M}^{\alpha} \equiv \frac{D P^{\alpha}}{D \tau}=\sigma B_{\gamma}^{\alpha} S^{\gamma}, \quad B_{\gamma}^{\alpha} \equiv \star F_{\beta ; \gamma}^{\alpha} U^{\beta}
$$

- Gravitational Force on a Gyroscope (Papapetrou-Pirani equation)

$$
F_{G}^{\alpha} \equiv \frac{D P^{\alpha}}{D \tau}=-\mathbb{H}_{\gamma}^{\alpha} S^{\gamma}, \quad \mathbb{H}_{\gamma}^{\alpha} \equiv \star R_{\beta \gamma \sigma}^{\alpha} U^{\beta} U^{\sigma}
$$

- Suggests the physical analogy: $B_{\alpha \beta} \longleftrightarrow \mathbb{H}_{\alpha \beta}$
- $B_{\alpha \beta} \equiv$ magnetic tidal tensor;
- $\mathbb{H}_{\alpha \beta} \equiv$ gravito-magnetic tidal tensor.

Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the gravitational force causing the non-geodesic motion of a spinning test particle are analogous tidal effects:

- Electromagnetic Force on a Magnetic Dipole (Covariant form for $\vec{F}_{E M}=\nabla(\vec{\mu} \cdot \vec{B})$)

$$
F_{E M}^{\alpha} \equiv \frac{D P^{\alpha}}{D \tau}=\sigma B_{\gamma}^{\alpha} S^{\gamma}, \quad B_{\gamma}^{\alpha} \equiv \star F_{\beta ; \gamma}^{\alpha} U^{\beta}
$$

- Gravitational Force on a Gyroscope (Papapetrou-Pirani equation)

$$
F_{G}^{\alpha} \equiv \frac{D P^{\alpha}}{D \tau}=-\mathbb{H}_{\gamma}^{\alpha} S^{\gamma}, \quad \mathbb{H}_{\gamma}^{\alpha} \equiv \star R_{\beta \gamma \sigma}^{\alpha} U^{\beta} U^{\sigma}
$$

- $\sigma=\mu / S_{\vec{S}} \equiv$ gyromagnetic ratio \Rightarrow equals 1 for gravity $\Rightarrow \vec{\mu} \leftrightarrow \vec{S}$

Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the gravitational force causing the non-geodesic motion of a spinning test particle are analogous tidal effects:

- Electromagnetic Force on a Magnetic Dipole (Covariant form for $\vec{F}_{E M}=\nabla(\vec{\mu} \cdot \vec{B})$)

$$
F_{E M}^{\alpha} \equiv \frac{D P^{\alpha}}{D \tau}=\sigma B_{\gamma}^{\alpha} S^{\gamma}, \quad B_{\gamma}^{\alpha} \equiv \star F_{\beta ; \gamma}^{\alpha} U^{\beta}
$$

- Gravitational Force on a Gyroscope (Papapetrou-Pirani equation)

$$
F_{G}^{\alpha} \equiv \frac{D P^{\alpha}}{D \tau}=-\mathbb{H}_{\gamma}^{\alpha} S^{\gamma}, \quad \mathbb{H}_{\gamma}^{\alpha} \equiv \star R_{\beta \gamma \sigma}^{\alpha} U^{\beta} U^{\sigma}
$$

- Relative minus sign: mass/charges of the same sign attract/repel one another \Rightarrow antiparallel charge/mass currents repel/attract.

Magnetic Tidal Tensor
Antisymmetric part:

$$
B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma}
$$

- Covariant form for
$\nabla \times \vec{B}=\frac{\partial \vec{E}}{\partial t}+4 \pi \vec{j}$

Gravito-Magnetic Tidal tensor
Antisymmetric part:
$\mathbb{H}_{[\alpha \beta]}=-4 \pi \epsilon_{\alpha \beta \sigma \gamma} J^{\sigma} U^{\gamma}$

Magnetic Tidal Tensor

Antisymmetric part:

$$
B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma}
$$

- Space projection
of Maxwell equations:

$$
F_{; \beta}^{\alpha \beta}=J^{\beta}
$$

Antisymmetric part:

$$
\mathbb{H}_{[\alpha \beta]}=-4 \pi \epsilon_{\alpha \beta \sigma \gamma} J^{\sigma} U^{\gamma}
$$

- Time-Space projection of Einstein equations:

$$
R_{\mu \nu}=8 \pi\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T_{\alpha}^{\alpha}\right)
$$

$$
\begin{aligned}
& \text { Trace: } \\
& B^{\alpha}{ }_{\alpha}=0
\end{aligned}
$$

- Time projection of Bianchi Identity:

$$
\star F_{; \beta}^{\alpha \beta}=0
$$

Trace:

$$
\mathbb{H}^{\alpha}{ }_{\alpha}=0
$$

- Time-Time projection of Bianchi Identity:

$$
\star R^{\gamma \alpha}{ }_{\gamma \beta}=0
$$

Electric-type Tidal Tensors

Electric-type tidal forces are described in an invariant way through the wordline deviation equations:

- Electromagnetic

$$
\frac{D^{2} \delta x^{\alpha}}{D \tau^{2}}=\frac{q}{m} E_{\gamma}^{\alpha} \delta x^{\gamma}, \quad E_{\gamma}^{\alpha} \equiv F_{\beta ; \gamma}^{\alpha} U^{\beta}
$$

- Gravitational (geodesic deviation)

$$
\frac{D^{2} \delta x^{\alpha}}{D \tau^{2}}=-\mathbb{E}_{\gamma}^{\alpha} \delta x^{\gamma}, \quad \mathbb{E}_{\gamma}^{\alpha} \equiv R_{\beta \gamma \sigma}^{\alpha} U^{\beta} U^{\sigma}
$$

which yield the acceleration of the vector δx^{α} connecting two particles with the same (Ciufolini, 1986) 4-velocity U^{α} — and the same q / m ratio in the electromagnetic case.
(Notation: $F_{\alpha \beta} \equiv$ Maxwell tensor, $R_{\alpha \beta \gamma \sigma} \equiv$ Riemann tensor)

Electric-type Tidal Tensors

Electric-type tidal forces are described in an invariant way through the wordline deviation equations:

- Electromagnetic

$$
\frac{D^{2} \delta x^{\alpha}}{D \tau^{2}}=\frac{q}{m} E_{\gamma}^{\alpha} \delta x^{\gamma}, \quad E_{\gamma}^{\alpha} \equiv F_{\beta ; \gamma}^{\alpha} U^{\beta}
$$

- Gravitational (geodesic deviation)

$$
\frac{D^{2} \delta x^{\alpha}}{D \tau^{2}}=-\mathbb{E}_{\gamma}^{\alpha} \delta x^{\gamma}, \quad \mathbb{E}_{\gamma}^{\alpha} \equiv R_{\beta \gamma \sigma}^{\alpha} U^{\beta} U^{\sigma}
$$

- Suggests the physical analogy: $E_{\alpha \beta} \longleftrightarrow \mathbb{E}_{\alpha \beta}$
- $E_{\alpha \beta}$ is the covariant derivative of the electric field $E^{\alpha}=F^{\alpha \mu} U_{\mu}$ measured by the observer with (fixed) 4-velocity U^{α};

Electric-type Tidal Tensors

Electric-type tidal forces are described in an invariant way through the wordline deviation equations:

- Electromagnetic

$$
\frac{D^{2} \delta x^{\alpha}}{D \tau^{2}}=\frac{q}{m} E^{\alpha}{ }_{\gamma} \delta x^{\gamma}, \quad E_{\gamma}^{\alpha} \equiv F_{\beta ; \gamma}^{\alpha} U^{\beta}
$$

- Gravitational (geodesic deviation)

$$
\frac{D^{2} \delta x^{\alpha}}{D \tau^{2}}=-\mathbb{E}_{\gamma}^{\alpha} \delta x^{\gamma}, \quad \mathbb{E}_{\gamma}^{\alpha} \equiv R_{\beta \gamma \sigma}^{\alpha} U^{\beta} U^{\sigma}
$$

- Suggests the physical analogy: $E_{\alpha \beta} \longleftrightarrow \mathbb{E}_{\alpha \beta}$
- Hence:
- $E_{\alpha \beta} \equiv$ electric tidal tensor; $\mathbb{E}_{\alpha \beta} \equiv$ gravito-electric tidal tensor.

Analogy based on tidal tensors (Costa-Herdeiro 2008)

Electromagnetism

Gravity

Worldline deviation:
$\frac{D^{2} \delta x^{\alpha}}{D \tau^{2}}=\frac{q}{m} E_{\beta}^{\alpha} \delta x^{\beta}$
Geodesic deviation:

$$
\frac{D^{2} \delta x^{\alpha}}{D \tau^{2}}=-\mathbb{E}_{\beta}^{\alpha} \delta x^{\beta}
$$

Force on magnetic dipole:
$\frac{D P^{\beta}}{D \tau}=\frac{q}{2 m} B^{\alpha \beta} S_{\alpha}$
Maxwell Equations:

$$
\begin{gathered}
E_{\alpha}^{\alpha}=4 \pi \rho_{c} \\
E_{[\alpha \beta]}=\frac{1}{2} F_{\alpha \beta ; \gamma} U^{\gamma} \\
B_{\alpha}^{\alpha}=0
\end{gathered}
$$

$$
B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma}
$$

Force on gyroscope:

$$
\frac{D P^{\beta}}{D \tau}=-\mathbb{H}^{\alpha \beta} S_{\alpha}
$$

Eqs. Grav. Tidal Tensors:

$$
\begin{gathered}
\mathbb{E}_{\alpha}^{\alpha}=4 \pi\left(2 \rho_{m}+T_{\alpha}^{\alpha}\right) \\
\mathbb{E}_{[\alpha \beta]}=0 \\
\mathbb{H}^{\alpha}{ }_{\alpha}=0
\end{gathered}
$$

$\mathbb{H}_{[\alpha \beta]}=-4 \pi \epsilon_{\alpha \beta \sigma \gamma} J^{\sigma} U^{\gamma}$

The Gravitational analogue of Maxwell's Equations

Electromagnetism

Maxwell Equations

$$
E_{\alpha}^{\alpha}=4 \pi \rho_{c}
$$

$$
B_{\alpha}^{\alpha}=0
$$

$$
E_{[\alpha \beta]}=\frac{1}{2} F_{\alpha \beta ; \gamma} U^{\gamma}
$$

$$
B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma}
$$

Gravity

Eqs. Grav. Tidal Tensors

$$
\mathbb{E}_{\alpha}^{\alpha}=4 \pi\left(2 \rho_{m}+T_{\alpha}^{\alpha}\right)
$$

$$
\mathbb{H}_{\alpha}^{\alpha}=0
$$

$$
\mathbb{E}_{[\alpha \beta]}=0
$$

$\mathbb{H}_{[\alpha \beta]}=-4 \pi \epsilon_{\alpha \beta \sigma \gamma} J^{\sigma} U^{\gamma}$

- Strikingly similar when the setups are stationary in the observer's rest frame (since $F_{\alpha \beta ; \gamma} U^{\gamma}$ and $\star F_{\alpha \beta ; \gamma} U^{\gamma}$ vanish).

The Gravitational analogue of Maxwell's Equations

Electromagnetism

Maxwell Equations

$$
E_{\alpha}^{\alpha}=4 \pi \rho_{c}
$$

Eqs. Grav. Tidal Tensors

$$
B_{\alpha}^{\alpha}=0
$$

$$
E_{[\alpha \beta]}=\frac{1}{2} F_{\alpha \beta ; \gamma} U^{\gamma}
$$

$$
B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma}
$$

$$
\begin{gathered}
\mathbb{E}_{\alpha}^{\alpha}=4 \pi\left(2 \rho_{m}+T_{\alpha}^{\alpha}\right) \\
\mathbb{H}^{\alpha}{ }_{\alpha}=0 \\
\mathbb{E}_{[\alpha \beta]}=0 \\
\mathbb{H}_{[\alpha \beta]}=-4 \pi \epsilon_{\alpha \beta \sigma \gamma} J^{\sigma} U^{\gamma}
\end{gathered}
$$

- Charges: the gravitational analogue of ρ_{c} is $2 \rho_{m}+T_{\alpha}^{\alpha}$ $\left(\rho_{m}+3 p\right.$ for a perfect fluid) \Rightarrow in gravity, pressure and all material stresses contribute as sources.

The Gravitational analogue of Maxwell's Equations

Electromagnetism

Maxwell Equations

$$
E_{\alpha}^{\alpha}=4 \pi \rho_{c}
$$

$$
B_{\alpha}^{\alpha}=0
$$

$$
E_{[\alpha \beta]}=\frac{1}{2} F_{\alpha \beta ; \gamma} U^{\gamma}
$$

$$
B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma}
$$

- Ampére law. in stationary (in the observer's rest frame) setups, equations $B_{[\alpha \beta]}$ and $\mathbb{H}_{[\alpha \beta]}$ match up to a factor of $2 \Rightarrow$ currents of mass/energy source gravitomagnetism like currents of charge source magnetism.

The Gravitational analogue of Maxwell's Equations

Electromagnetism

Maxwell Equations

$$
\begin{array}{cc}
E_{\alpha}^{\alpha}=4 \pi \rho_{c} & \mathbb{E}_{\alpha}^{\alpha}=4 \pi\left(2 \rho_{m}+T_{\alpha}^{\alpha}\right) \\
B_{\alpha}^{\alpha}=0 & \mathbb{H}^{\alpha}{ }_{\alpha}=0 \\
E_{[\alpha \beta]}=\frac{1}{2} F_{\alpha \beta ; \gamma} U^{\gamma} & \mathbb{E}_{[\alpha \beta]}=0 \\
B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma} & \mathbb{H}_{[\alpha \beta]}=-4 \pi \epsilon_{\alpha \beta \sigma \gamma} J^{\sigma} U^{\gamma}
\end{array}
$$

- Absence of electromagnetic-like induction effects in gravity.
- $\mathbb{E}_{\mu \gamma}$ always symmetric \Rightarrow no gravitational analogue to Faraday's law of induction!

The Gravitational analogue of Maxwell's Equations

Electromagnetism

Maxwell Equations

$$
E_{\alpha}^{\alpha}=4 \pi \rho_{c}
$$

$$
B_{\alpha}^{\alpha}=0
$$

$$
E_{[\alpha \beta]}=\frac{1}{2} F_{\alpha \beta ; \gamma} U^{\gamma}
$$

$$
B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma}
$$

- Absence of electromagnetic-like induction effects in gravity:
- Induction term $\star F_{\alpha \beta ; \gamma} U^{\gamma}$ in $B_{[\alpha \beta]}$ has no counterpart in $\mathbb{H}_{[\alpha \beta]}$ \Rightarrow no gravitational analogue to the magnetic fields induced by time varying electric fields.

Magnetic dipole vs Gyroscope

Electromagnetic Force on a Magnetic Dipole

$$
F_{E M}^{\beta}=\frac{q}{2 m} B^{\alpha \beta} S_{\alpha}
$$

Gravitational Force on a Spinning Particle

$$
F_{G}^{\beta}=-\mathbb{H}^{\alpha \beta} S_{\alpha}
$$

The explicit analogy between $F_{E M}^{\beta}$ and F_{G}^{β} is ideally suited to:

- Compare the two interactions: amounts to compare $B_{\alpha \beta}$ and $\mathbb{H}_{\alpha \beta}$, which is crystal clear from the equations for tidal tensors:

Magnetic Tidal Tensor

$$
\begin{array}{cc}
B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma} & \mathbb{H}_{[\alpha \beta]}=-4 \pi \epsilon_{\alpha \beta \sigma \gamma} J^{\sigma} U^{\gamma} \\
B_{\alpha}^{\alpha}=0 & \mathbb{H}^{\alpha}{ }_{\alpha}=0
\end{array}
$$

Magnetic dipole vs Gyroscope

Electromagnetic Force on a Magnetic Dipole

$$
F_{E M}^{\beta}=\frac{q}{2 m} B^{\alpha \beta} S_{\alpha}
$$

Gravitational Force on a Spinning Particle

$$
F_{G}^{\beta}=-\mathbb{H}^{\alpha \beta} S_{\alpha}
$$

The explicit analogy between $F_{E M}^{\beta}$ and F_{G}^{β} is ideally suited to:

- Compare the two interactions: amounts to compare $B_{\alpha \beta}$ and $\mathbb{H}_{\alpha \beta}$, which is crystal clear from the equations for tidal tensors:
- Unveils similarities between the two forces which allow us visualize, in analogy with the more familiar electromagnetic ones, gravitational effects which are not transparent in the Papapetrou's original form.
- and fundamental differences which prove especially enlightening to the understanding of spin-curvature coupling.

Some Fundamental Differences

Electromagnetic Force on a Magnetic Dipole

$$
F_{E M}^{\beta}=\frac{q}{2 m} B^{\alpha \beta} S_{\alpha}
$$

Gravitational Force on a Spinning Particle

$$
F_{G}^{\beta}=-\mathbb{H}^{\alpha \beta} S_{\alpha}
$$

- $B_{\alpha \beta}$ is linear, whereas $\mathbb{H}_{\alpha \beta}$ is not
- In vacuum $\mathbb{H}_{[\alpha \beta]}=0$ (symmetric tensor);
- $B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma} \neq 0$ (even in vacuum)
- $\mathbb{H}_{\alpha \beta} U^{\beta}=0$ (spatial tensor) $\Rightarrow F_{G}^{\beta} U_{\beta}=0$ (it is a spatial force).
- $B_{\alpha \beta} U^{\beta} \neq 0 \Rightarrow F_{E M}^{\beta} U_{\beta} \neq 0$ (non-vanishing time projection!)

Symmetries of Tidal tensors

Electromagnetic Force on a Magnetic Dipole
$F_{E M}^{\beta}=\frac{q}{2 m} B^{\alpha \beta} S_{\alpha}$
Magnetic Tidal Tensor
$B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma}$

Gravitational Force on a Gyroscope
$F_{G}^{\beta}=-\mathbb{H}_{\alpha}^{\beta} S^{\alpha}$
Gravito-magnetic Tidal Tensor
$\mathbb{H}_{[\alpha \beta]}=-4 \pi \epsilon_{\alpha \beta \sigma \gamma} J^{\sigma} U^{\gamma}$

- If the fields do not vary along the test particle's wordline, $\star F_{\alpha \beta ; \gamma} U^{\gamma}=0$ and the tidal tensors have the same symmetries.
- Allows for a similarity between the two interactions.

Gravitational Spin-Spin Force

$$
F_{G}^{i} \simeq \frac{3}{c}\left[\frac{(\vec{r} \cdot \vec{J})}{r^{5}} \delta^{i j}+2 \frac{\left.r^{(i} \jmath^{j}\right)}{r^{5}}-5 \frac{(\vec{r} \cdot \vec{J}) r^{i} r^{j}}{r^{7}}\right] S_{j} \stackrel{J \leftrightarrow \mu}{=} F_{E M}^{i}
$$

An analogy already known from linearized theory (Wald, 1972), and usually cast in the form:

$$
\vec{F}_{G}=-\nabla\left(\vec{S} \cdot \vec{B}_{G}\right)
$$

Gravitational Spin-Spin Force

$$
F_{G}^{i} \simeq \frac{3}{c}\left[\frac{(\vec{r} \cdot \vec{J})}{r^{5}} \delta^{i j}+2 \frac{\left.r^{(i} \jmath^{j}\right)}{r^{5}}-5 \frac{(\vec{r} \cdot \vec{J}) r^{i} r^{j}}{r^{7}}\right] S_{j} \stackrel{J \leftrightarrow \mu}{=} F_{E M}^{i}
$$

An analogy already known from linearized theory (Wald, 1972), and usually cast in the form:

$$
\vec{F}_{G}=-\nabla\left(\vec{S} \cdot \vec{B}_{G}\right)+\frac{\partial}{\partial t}\left(\epsilon^{i j k} \phi_{, k}\right) S_{i} \vec{e}_{j}
$$

- Holds only if the gyroscope is at rest and the fields are stationary.

Gravitational Spin-Spin Force

$$
F_{G}^{i} \simeq \frac{3}{c}\left[\frac{(\vec{r} \cdot \vec{J})}{r^{5}} \delta^{i j}+2 \frac{r^{(i} j^{j)}}{r^{5}}-5 \frac{(\vec{r} \cdot \vec{J}) r^{i} r^{j}}{r^{7}}\right] S_{j} \stackrel{J_{\leftrightarrow} \mu}{=} F_{E M}^{i}
$$

An analogy already known from linearized theory (Wald, 1972), and usually cast in the form:

$$
\vec{F}_{G}=-\nabla\left(\vec{S} \cdot \vec{B}_{G}\right)+\frac{\partial}{\partial t}\left(\epsilon^{i j k} \phi_{, k}\right) S_{i} \vec{e}_{j}
$$

- Not suitable to describe motion; accounts only for spin-spin coupling.

Gravitational Spin-Spin Force

$$
F_{G}^{i} \simeq \frac{3}{c}\left[\frac{(\vec{r} \cdot \vec{J})}{r^{5}} \delta^{i j}+2 \frac{r^{(i} j^{j)}}{r^{5}}-5 \frac{(\vec{r} \cdot \vec{J}) r^{i} r^{j}}{r^{7}}\right] S_{j} \stackrel{J_{\leftrightarrow} \mu}{=} F_{E M}^{i}
$$

An analogy already known from linearized theory (Wald, 1972), and usually cast in the form:

$$
\vec{F}_{G}=-\nabla\left(\vec{S} \cdot \vec{B}_{G}\right)+\frac{\partial}{\partial t}\left(\epsilon^{i j k} \phi_{, k}\right) S_{i} \vec{e}_{j}
$$

- Not suitable to describe motion; accounts only for spin-spin coupling.

The gyroscope deviates from geodesic motion even in the absence of rotating sources (e.g. Schwarzschild spacetime).

An effect readily visualized using the explicit analogy (always valid!!):

Force on a Magnetic Dipole

$$
F_{E M}^{\beta}=\frac{q}{2 m} B^{\alpha \beta} S_{\alpha}
$$

Force on a Gyroscope

$$
F_{G}^{\beta}=-\mathbb{H}^{\alpha \beta} S_{\alpha}
$$

- It the magnetic tidal tensor, as seen by the test particle, that determines the force exerted upon it;
- Hence the gyroscope deviates from geodesic motion by the same reason that a magnetic dipole suffers a force even in the coulomb field of a point charge: in its "rest" frame, there is a non-vanishing magnetic tidal tensor.

Symmetries of Tidal tensors

Electromagnetic Force on a Magnetic Dipole
$F_{E M}^{\beta}=\frac{q}{2 m} B^{\alpha \beta} S_{\alpha}$
Magnetic Tidal Tensor
$B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}-2 \pi \epsilon_{\alpha \beta \sigma \gamma} j^{\sigma} U^{\gamma}$

Gravitational Force on a Gyroscope
$F_{G}^{\beta}=-\mathbb{H}_{\alpha}^{\beta} S^{\alpha}$
Gravito-magnetic Tidal Tensor
$\mathbb{H}_{[\alpha \beta]}=-4 \pi \epsilon_{\alpha \beta \sigma \gamma} J^{\sigma} U^{\gamma}$

- If the fields vary along the test particle's wordline, the two interactions differ significantly.
- In vacuum, $\mathbb{H}_{[\alpha \beta]}$ is always symmetric, whereas $B_{\alpha \beta}$ is not: $B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma}$.

Radial Motion in Coulomb Field

- The dipole sees a time varying electric field;
- Thus, $B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma} \neq 0$

$$
F_{E M}^{i}=\frac{q}{2 m} B_{\alpha}^{i} S^{\alpha}=\gamma \frac{q Q}{2 m r^{3}}(\vec{v} \times \vec{S})^{i}
$$

Radial Motion in Schwarzschild

- No analogous gravitational effect: $F_{G}^{\alpha}=0 \Rightarrow$ gyroscope moves along a geodesic.

Scalar Invariants

The Riemann tensor (20 independent components) splits irreducibly into three spatial tensors (Louis Bel, 1958):

$$
\begin{aligned}
R_{\alpha \beta}^{\gamma \delta}= & 4\left\{2 \tilde{U}_{[\alpha} \tilde{U}^{[\gamma}+g_{[\alpha}^{[\gamma}\right\} \tilde{\mathbb{E}}_{\beta]}^{\delta]} \\
& +2\left\{\epsilon_{\alpha \beta \mu \nu} \tilde{\mathbb{H}}^{\mu[\delta} \tilde{U}^{\gamma]} \tilde{U}^{\nu}+\epsilon^{\gamma \delta \mu \nu} \tilde{\mathbb{H}}_{\mu[\beta} \tilde{U}_{\alpha]} \tilde{U}_{\nu}\right\} \\
& +\epsilon_{\alpha \beta \mu \nu} \epsilon^{\gamma \delta \sigma \tau} \tilde{U}^{\mu} \tilde{U}_{\sigma}\left\{\tilde{\mathbb{F}}_{\tau}^{\nu}+\tilde{\mathbb{E}}_{\tau}^{\nu}-g_{\tau}^{\nu} \tilde{\mathbb{E}}_{\rho}^{\rho}\right\}
\end{aligned}
$$

$$
\mathbb{F}_{\alpha \beta} \equiv \star R \star_{\alpha \mu \beta \nu} U^{\mu} U^{\nu}
$$

- $\mathbb{E}_{\alpha \beta}, \mathbb{F}_{\alpha \beta}$: spatial, symmetric tensors $\Rightarrow 6$ independent components each;
- $\mathbb{H}_{\alpha \beta}$: spatial, traceless tensor $\Rightarrow 8$ independent components
- $\mathbb{F}_{\alpha \beta}$ has no electromagnetic analogue.

Scalar Invariants

The Riemann tensor (20 independent components) splits irreducibly into three spatial tensors (Louis Bel, 1958):

- in vacuum $\mathbb{F}_{\alpha \beta}=-\mathbb{E}_{\alpha \beta}$

$$
\begin{aligned}
R_{\alpha \beta}^{\gamma \delta}= & 4\left\{2 \tilde{U}_{[\alpha} \tilde{U}^{[\gamma}+g_{[\alpha}^{[\gamma}\right\} \tilde{\mathbb{E}}_{\beta]}^{\delta]} \\
& +2\left\{\epsilon_{\alpha \beta \mu \nu} \tilde{\mathbb{H}}^{\mu[\delta} \tilde{U}^{\gamma]} \tilde{U}^{\nu}+\epsilon^{\gamma \delta \mu \nu} \tilde{\mathbb{H}}_{\mu[\beta} \tilde{U}_{\alpha]} \tilde{U}_{\nu}\right\} \\
& +\epsilon_{\alpha \beta \mu \nu} \epsilon^{\gamma \delta \sigma \tau} \tilde{U}^{\mu} \tilde{U}_{\sigma}\left\{\tilde{\mathbb{F}}_{\tau}^{\nu}+\tilde{\mathbb{E}}_{\tau}^{\nu}-g_{\tau}^{\nu} \tilde{\mathbb{E}}_{\rho}^{\rho}\right\}
\end{aligned}
$$

$$
\mathbb{F}_{\alpha \beta} \equiv \star R \star_{\alpha \mu \beta \nu} U^{\mu} U^{\nu}
$$

- $\mathbb{E}_{\alpha \beta}, \mathbb{F}_{\alpha \beta}$: spatial, symmetric tensors $\Rightarrow 6$ independent components each;
- $\mathbb{H}_{\alpha \beta}$: spatial, traceless tensor $\Rightarrow 8$ independent components
- $\mathbb{F}_{\alpha \beta}$ has no electromagnetic analogue.

Scalar Invariants

- in vacuum $\mathbb{F}_{\alpha \beta}=-\mathbb{E}_{\alpha \beta}$

$$
\begin{aligned}
R_{\alpha \beta}^{\gamma \delta}= & 4\left\{2 \tilde{U}_{[\alpha} \tilde{U}^{[\gamma}+g_{[\alpha}^{[\gamma}\right\} \tilde{\mathbb{E}}_{\beta]}^{\delta]} \\
& +2\left\{\epsilon_{\alpha \beta \mu \nu} \tilde{\mathbb{H}}^{\mu[\delta} \tilde{U}^{\gamma]} \tilde{U}^{\nu}+\epsilon^{\gamma \delta \mu \nu} \tilde{\mathbb{H}}_{\mu[\beta} \tilde{U}_{\alpha]} \tilde{U}_{\nu}\right\}
\end{aligned}
$$

- $\mathbb{E}_{\alpha \beta}$ and $\mathbb{H}_{\alpha \beta}$ completely encode the $14(6+8)$ independent components of the Riemann tensor in vacuum (Weyl Tensor).

Scalar Invariants

Although each of these spatial tensors is determined by the 4-velocity U^{α} of the observer measuring it:

$$
\begin{aligned}
\mathbb{E}_{\alpha \beta} & \equiv R_{\alpha \mu \beta \nu} U^{\mu} U^{\nu} \\
\mathbb{H}_{\alpha \beta} & \equiv \star R_{\alpha \mu \beta \nu} U^{\mu} U^{\nu}
\end{aligned}
$$

it can be shown that the following expressions are observer independent (in vacuum)::

$$
\begin{aligned}
\mathbb{E}^{\alpha \gamma} \mathbb{E}_{\alpha \gamma}-\mathbb{H}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{8} R_{\alpha \beta \gamma \delta} R^{\alpha \beta \gamma \delta} \\
\mathbb{E}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{16} R_{\alpha \beta \gamma \delta} \star R^{\alpha \beta \gamma \delta}
\end{aligned}
$$

- gravitational tidal tensors form scalar invariants!

Scalar Invariants

- in vacuum

$$
\begin{aligned}
\mathbb{E}^{\alpha \gamma} \mathbb{E}_{\alpha \gamma}-\mathbb{H}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{8} R_{\alpha \beta \gamma \delta} R^{\alpha \beta \gamma \delta} \\
\mathbb{E}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{16} R_{\alpha \beta \gamma \delta} \star R^{\alpha \beta \gamma \delta}
\end{aligned}
$$

- Formally analogous to the electromagnetic scalar invariants:

$$
\begin{aligned}
\vec{E}^{2}-\vec{B}^{2} & =-\frac{1}{2} F_{\alpha \beta} F^{\alpha \beta} \\
\vec{E} \cdot \vec{B} & =-\frac{1}{4} F_{\alpha \beta} \star F^{\alpha \beta}
\end{aligned}
$$

Scalar Invariants

- in vacuum

$$
\begin{aligned}
\mathbb{E}^{\alpha \gamma} \mathbb{E}_{\alpha \gamma}-\mathbb{H}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{8} R_{\alpha \beta \gamma \delta} R^{\alpha \beta \gamma \delta} \\
\mathbb{E}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{16} R_{\alpha \beta \gamma \delta} \star R^{\alpha \beta \gamma \delta}
\end{aligned}
$$

- Formally analogous to the electromagnetic scalar invariants:

$$
\begin{aligned}
\vec{E}^{2}-\vec{B}^{2} & =-\frac{1}{2} F_{\alpha \beta} F^{\alpha \beta} \\
\vec{E} \cdot \vec{B} & =-\frac{1}{4} F_{\alpha \beta} \star F^{\alpha \beta}
\end{aligned}
$$

- This is a purely formal analogy, relating electromagnetic fields with gravitational tidal tensors (which are one order higher in differentiation!)

Scalar Invariants - Electromagnetism

$$
\begin{aligned}
\vec{E}^{2}-\vec{B}^{2} & =-\frac{1}{2} F_{\alpha \beta} F^{\alpha \beta} \\
\vec{E} \cdot \vec{B} & =-\frac{1}{4} F_{\alpha \beta} \star F^{\alpha \beta}
\end{aligned}
$$

- $\vec{E} \cdot \vec{B}=0$ and $\vec{E}^{2}-\vec{B}^{2}>0 \Rightarrow$ there are observers for which the magnetic field \vec{B} vanishes.
- $\vec{E} \cdot \vec{B}=0$ and $\vec{E}^{2}-\vec{B}^{2}<0 \Rightarrow$ there are observers for which the electric field \vec{E} vanishes.

Scalar Invariants - Electromagnetism

$$
\begin{aligned}
\vec{E}^{2}-\vec{B}^{2} & =-\frac{1}{2} F_{\alpha \beta} F^{\alpha \beta} \\
\vec{E} \cdot \vec{B} & =-\frac{1}{4} F_{\alpha \beta} \star F^{\alpha \beta}
\end{aligned}
$$

- $\vec{E} \cdot \vec{B}=0$ and $\vec{E}^{2}-\vec{B}^{2}>0 \Rightarrow$ there are observers for which the magnetic field \vec{B} vanishes.
- $\vec{E} \cdot \vec{B}=0$ and $\vec{E}^{2}-\vec{B}^{2}<0 \Rightarrow$ there are observers for which the electric field \vec{E} vanishes.
- $\vec{E}^{2}-\vec{B}^{2}$ and $\vec{E} . \vec{B}$ are the only algebraically independent invariants one can define from the Maxwell tensor $F^{\alpha \beta}$.

Scalar Invariants - Gravity (Vacuum)

In vacuum, one can construct 4 independent scalar invariants from Riemann tensor (would be 14 in general):

$$
\begin{aligned}
\mathbb{E}^{\alpha \gamma} \mathbb{E}_{\alpha \gamma}-\mathbb{H}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{8} R_{\alpha \beta \gamma \delta} R^{\alpha \beta \gamma \delta} \equiv \frac{1}{8} \mathbf{R} \cdot \mathbf{R} \\
\mathbb{E}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{16} R_{\alpha \beta \gamma \delta} \star R^{\alpha \beta \gamma \delta} \equiv \frac{1}{16} \mathbf{R} \cdot{ }^{\star} \mathbf{R} \\
\mathbb{E}^{\alpha}{ }_{\beta} \mathbb{E}^{\beta}{ }_{\gamma} \mathbb{E}^{\gamma}{ }_{\alpha}-3 \mathbb{E}_{\beta}^{\alpha} \mathbb{H}^{\beta}{ }_{\gamma} \mathbb{H}^{\gamma}{ }_{\alpha} & =\frac{1}{16} R^{\alpha \beta}{ }_{\lambda \mu} R^{\lambda \mu}{ }_{\rho \sigma} R^{\rho \sigma} R^{\rho \sigma}{ }_{\alpha \beta} \equiv A \\
\mathbb{H}^{\alpha}{ }_{\beta} \mathbb{H}^{\beta}{ }_{\gamma} \mathbb{H}^{\gamma}{ }_{\alpha}-3 \mathbb{E}^{\alpha}{ }_{\beta} \mathbb{E}^{\beta}{ }_{\gamma} \mathbb{H}^{\gamma}{ }_{\alpha} & =\frac{1}{16} R^{\alpha \beta}{ }_{\lambda \mu} R^{\lambda \mu}{ }_{\rho \sigma} R^{\rho \sigma} \star R^{\rho \sigma}{ }_{\alpha \beta} \equiv B
\end{aligned}
$$

- R. ${ }^{\star} \mathbf{R}=0$ and $\mathbf{R} . \mathbf{R} \neq 0$ is not sufficient to ensure that there are observers for which $\mathbb{H}_{\alpha \gamma}$ (or $\mathbb{E}_{\alpha \gamma}$) vanishes.
- Needs also $M \equiv I^{3} / J^{2}-6$ to be real positive, where

$$
I \equiv \frac{1}{8} \mathbf{R} \cdot \mathbf{R}+\frac{i}{8} \star \mathbf{R} \cdot \mathbf{R} ; \quad J \equiv A-i B
$$

Scalar Invariants - Gravity (Vacuum)

In vacuum, one can construct 4 independent scalar invariants from Riemann tensor (would be 14 in general):

$$
\begin{gathered}
\mathbb{E}^{\alpha \gamma} \mathbb{E}_{\alpha \gamma}-\mathbb{H}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma}=\frac{1}{8} R_{\alpha \beta \gamma \delta} R^{\alpha \beta \gamma \delta} \equiv \frac{1}{8} \mathbf{R} \cdot \mathbf{R} \\
\mathbb{E}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma}=\frac{1}{16} R_{\alpha \beta \gamma \delta} \star R^{\alpha \beta \gamma \delta} \equiv \frac{1}{16} \mathbf{R} .{ }^{\star} \mathbf{R} \\
\mathbb{E}_{\beta}^{\alpha} \mathbb{E}^{\beta}{ }_{\gamma} \mathbb{E}^{\gamma}{ }_{\alpha}-3 \mathbb{E}^{\alpha}{ }_{\beta} \mathbb{H}^{\beta}{ }_{\gamma} \mathbb{H}^{\gamma}{ }_{\alpha}=\frac{1}{16} R^{\alpha \beta}{ }_{\lambda \mu} R^{\lambda \mu}{ }_{\rho \sigma} R^{\rho \sigma} R^{\rho \sigma}{ }_{\alpha \beta} \equiv A \\
\mathbb{H}_{\beta}^{\alpha} \mathbb{H}^{\beta}{ }_{\gamma} \mathbb{H}^{\gamma}{ }_{\alpha}-3 \mathbb{E}^{\alpha}{ }_{\beta} \mathbb{E}^{\beta}{ }_{\gamma} \mathbb{H}^{\gamma}{ }_{\alpha}=\frac{1}{16} R^{\alpha \beta}{ }_{\lambda \mu} R^{\lambda \mu}{ }_{\rho \sigma} R^{\rho \sigma} \star R^{\rho \sigma}{ }_{\alpha \beta} \equiv B \\
\text { M } M 00 \text { (real), } \mathbf{R} .{ }^{\star} \mathbf{R}=0 \text { and } \mathbf{R} . \mathbf{R}>0 \Rightarrow \text { there are observers } \\
\text { for which } \mathbb{H}_{\alpha \gamma} \text { vanishes ("Purely Electric" spacetime). } \\
\text { M } M \geq 0 \text { (real), } \mathbf{R} .{ }^{\star} \mathbf{R}=0 \text { and } \mathbf{R} . \mathbf{R}<0 \Rightarrow \text { there would be } \\
\text { observers for which } \mathbb{E}_{\alpha \gamma} \text { vanishes (but there are no known } \\
\text { "Purely Magnetic" vacuum solutions; conjecture: do not exist) }
\end{gathered}
$$

Kerr metric: $\left\{\begin{array}{l}\mathbb{E}^{\alpha \gamma} \mathbb{E}_{\alpha \gamma}-\mathbb{H}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} \approx \frac{6 m^{2}}{r^{6}}>0 ; \quad I^{3}=6 J^{2} \text { (Petrov D) } \\ \mathbb{E}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} \approx \frac{18 \mathrm{Jm} \cos \theta}{r^{7}}=0 \text { in the plane } \theta=\pi / 2\end{array}\right.$

- In the equatorial plane $\theta=\pi / 2$, there are observers for which locally $\mathbb{H}_{\alpha \gamma}=0$:

- Observers such that $v^{\phi} \equiv \frac{U^{\phi}}{U^{t}}=\frac{a^{2}}{a^{2}+r^{2}}$ (not the "co-rotating" observers!)
- Impossible in the electromagnetic analog.

- A moving dipole sees a time-varying electromagnetic field;
- Thus $B_{\alpha \beta}$ must be non vanishing (consequence of $\nabla \times \vec{B}=\partial \vec{E} / \partial t):$

$$
B_{[\alpha \beta]}=\frac{1}{2} \star F_{\alpha \beta ; \gamma} U^{\gamma} \neq 0 \Rightarrow B_{\alpha \beta} \neq 0
$$

Spinning Charge: $\left\{\vec{E}^{2}-\vec{B}^{2}=\frac{q^{2}}{r^{4}}-\frac{\mu^{2}(5+3 \cos 2 \theta)}{2 r^{6}}>0\right.$

$$
\vec{E} \cdot \vec{B}=\frac{2 \mu q \cos \theta}{r^{5}}=0 \text { in the plane } \theta=\pi / 2
$$

- In the equatorial plane $\theta=\pi / 2$, there are observers for which locally $\vec{B}=0$:

- Observers such that $v^{\phi} \equiv \frac{U^{\phi}}{U^{t}}=\frac{J}{2 m r^{2}}$ (not the "co-rotating" observers!)

Spinning Charge vs Spinning mass

- For $r \rightarrow \infty$, the two velocities asymptotically match! (up to a factor of 2)

- No precession:

$$
\vec{B}=0 \Rightarrow \frac{d \vec{S}}{d t}=0
$$

- There is a Force applied:
$B_{\alpha \beta} \neq 0 \Rightarrow F_{E M}^{\alpha}=\frac{q}{2 m} B^{\beta \alpha} S_{\beta} \neq 0$ (consequence of $\nabla \times \vec{B}=\partial \vec{E} / \partial t$)
- Gyroscope precesses: $\frac{d \vec{S}}{d t} \neq 0$
- No Force on Gyroscope:
$\mathbb{H}_{\alpha \beta}=0 \Rightarrow F_{G}^{\alpha}=-\mathbb{H}^{\beta \alpha} S_{\beta}=0$

Time projection of $F_{E M}^{\alpha}$ in the dipole's proper frame:

$$
F_{E M}^{\alpha} U_{\alpha}=-B^{i 0} \mu_{i}=\frac{\partial \vec{B}}{\partial t} \cdot \vec{\mu}
$$

- The magnetic dipole may be thought as a small current loop.

(Area of the loop
$A=4 \pi a^{2} ; I \equiv$ current through the loop, $\vec{n} \equiv$ unit vector normal to the loop)
- The magnetic dipole moment is given by $\vec{\mu}=I A \vec{n}$

Time projection of $F_{E M}^{\alpha}$ in the dipole's proper frame:

$$
F_{E M}^{\alpha} U_{\alpha}=-B^{i 0} \mu_{i}=\frac{\partial \vec{B}}{\partial t} \cdot \vec{\mu}=\frac{\partial \vec{B}}{\partial t} \cdot \vec{n} A I=\frac{\partial \Phi}{\partial t} I
$$

- The magnetic dipole may be thought as a small current loop.

(Area of the loop
$A=4 \pi a^{2} ; I \equiv$ current through the loop, $\vec{n} \equiv$ unit vector normal to the loop)
- $\vec{B} A \vec{n}=\Phi \equiv$ magnetic flux trough the loop

Therefore, by Faraday's law of induction:

$$
F_{E M}^{\alpha} U_{\alpha}=-B^{i 0} \mu_{i}=\frac{\partial \vec{B}}{\partial t} \cdot \vec{\mu}=\frac{\partial \vec{B}}{\partial t} \cdot \vec{n} A I=\frac{\partial \Phi}{\partial t} I=-I \oint_{\text {loop }} \vec{E} \cdot \overrightarrow{d s}
$$

- $\vec{E} \equiv$ Induced electric field

- Hence $F_{E M}^{\alpha} U_{\alpha}$ is minus the power transferred to the dipole by Faraday's law of induction.
- $F_{E M}^{\alpha} U_{\alpha}=D E / d \tau$ is minus the power transferred to the dipole by Faraday's law of induction;
- yields the variation of the energy E as measured in the dipole's center of mass rest frame;
- is reflected in a variation of the dipole's proper mass $m=-P^{\alpha} U_{\alpha}$

Time Projection of F_{G}^{α} - no gravitational induction

Since $\mathbb{H}_{\alpha \beta}$ is a spatial tensor, we always have

$$
F_{G}^{\alpha} U_{\alpha}=-\frac{d m}{d \tau}=0
$$

- No work is done by induction \Rightarrow the energy of the gyroscope, as measured in its center of mass frame, is constant;
- the proper mass $m=-P^{\alpha} U_{\alpha}$ of the gyroscope is constant.
- Spatial character of gravitational tidal tensors precludes induction effects analogous to the electromagnetic ones.

Time Projection of F_{G}^{α} - no gravitational induction

Example: A mass loop subject to the time-varying "gravitomagnetic field" of a moving Kerr Black Hole

Time Projection of F_{G}^{α} - no gravitational induction

Example: A mass loop subject to the time-varying "gravitomagnetic field" of a moving Kerr Black Hole

In the loop's rest frame:
-No work done on the loop

Time Projection of F_{G}^{α} - no gravitational induction

Example: A mass loop subject to the time-varying "gravitomagnetic field" of a moving Kerr Black Hole

In the loop's rest frame:
-No work done on the loop

Time components on arbitrary frames

- Electromagnetism:

In an arbitrary frame, in which the dipole has 4-velocity $U^{\beta}=\gamma(1, \vec{v})$, the time component of the force exerted on a magnetic dipole is:

$$
\begin{aligned}
\left(F_{E M}\right)_{0} & \equiv-\frac{D E}{d \tau}=\frac{F_{E M}^{\beta} U_{\beta}}{\gamma}-F_{E M}^{i} v_{i}=-\left(\frac{1}{\gamma} \frac{d m}{d \tau}+F_{E M}^{i} v_{i}\right) \\
& \equiv-\left(\mathcal{P}_{\text {mech }}+\mathcal{P}_{\text {ind }}\right)
\end{aligned}
$$

where $E \equiv-P_{0}$ is the energy of the dipole and we identify:

- $\mathcal{P}_{\text {ind }}=\frac{1}{\gamma} \frac{d m}{d \tau}=-F_{E M}^{\beta} U_{\beta} / \gamma \equiv$ induced power
- $\mathcal{P}_{\text {mech }}=F_{E M}^{i} v_{i}$ "mechanical" power transferred to the dipole by the 3-force $F_{E M}^{i}$ exerted upon it.

Static Observers - Electromagnetism

$$
\left(F_{E M}\right)_{0}=\frac{q}{2 m} B_{\alpha 0} S^{\alpha}=\star F_{\alpha \gamma ; 0} U^{\gamma} S^{\alpha}=0
$$

- no work is done on the magnetic dipole.
- Related to a basic principle from electromagnetism: the total amount of work done by a static magnetic field on an arbitrary system of currents is zero.

$$
\vec{F}=q \vec{v} \times \vec{B} \Rightarrow \vec{F} \perp \vec{v}
$$

(Lorentz Force on each individual charge)

Static Observers - Electromagnetism

- When the fields are stationary in the observer's rest frame, $\left(F_{E M}\right)_{0}=0 \Rightarrow$ no work is done on the magnetic dipole.
- $\mathcal{P}_{\text {mech }}$ and $\mathcal{P}_{\text {ind }}$ exactly cancel out

Static Observers - Electromagnetism

- When the fields are stationary in the observer's rest frame, $\left(F_{E M}\right)_{0}=0 \Rightarrow$ no work is done on the magnetic dipole.
- $\mathcal{P}_{\text {mech }}$ and $\mathcal{P}_{\text {ind }}$ exactly cancel out

Static Observers - Electromagnetism

- When the fields are stationary in the observer's rest frame, $\left(F_{E M}\right)_{0}=0 \Rightarrow$ no work is done on the magnetic dipole.
- $\mathcal{P}_{\text {mech }}$ and $\mathcal{P}_{\text {ind }}$ exactly cancel out.

Static Observers - Gravity

- In gravity, since those induction effects are absent, such cancellation does not occur:

$$
\left(F_{G}\right)_{0}=-\frac{D E}{d \tau}=-F_{G}^{i} v_{i} \neq 0
$$

- Therefore, the stationary observer must measure a non-zero work done on the gyroscope.
- That is to say, a static "gravitomagnetic field" (unlike its electromagnetic counterpart) does work.
- And there is a known consequence of this fact: the spin dependent upper bound for the energy released when two black holes collide, obtained by Hawking (1971) from the area law.
- For the case with spins aligned, from Hawking's expression one can infer a gravitational spin-spin interaction energy (Wald, 1972).

Static Observers - Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin $S \equiv \sqrt{S^{\alpha} S_{\alpha}}$ falling along the symmetry axis of a larger Kerr black hole of mass m and angular momentum $J=a m$.

Static Observers - Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin $S \equiv \sqrt{S^{\alpha} S_{\alpha}}$ falling along the symmetry axis of a larger Kerr black hole of mass m and angular momentum $J=a m$.

Static Observers - Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin $S \equiv \sqrt{S^{\alpha} S_{\alpha}}$ falling along the symmetry axis of a larger Kerr black hole of mass m and angular momentum $J=a m$.

Gravitational Radiation

Static Observers - Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin $S \equiv \sqrt{S^{\alpha} S_{\alpha}}$ falling along the symmetry axis of a larger Kerr black hole of mass m and angular momentum $J=a m$.

- The time component of the force acting on the small black hole is given by:

$$
\left(F_{G}\right)_{0} \equiv \frac{D P_{0}}{D \tau}=-\frac{d E}{d \tau}=-\frac{2 m a\left(3 r^{2}-a^{2}\right) U^{r} S}{\left(r^{2}+a^{2}\right)^{3}}
$$

Integrating this equation from infinity to the horizon one obtains

$$
\int_{\infty}^{r_{+}}\left(F_{G}\right)_{0} \equiv \Delta E=\frac{a S}{2 m\left[m+\sqrt{m^{2}-a^{2}}\right]}
$$

which is precisely Hawking's spin-spin interaction energy for this particular setup.

Conclusions

- The tidal tensor formalism unveils an exact, fully general analogy between the force on a gyroscope and on a magnetic dipole;
- at the same time it makes transparent both the similarities and key differences between the two interactions;
- The non-geodesic motion of a spinning test particle not only can be easily understood, but also exactly described, by a simple application of this analogy.
- This analogy sheds light on important aspects of spin-curvature coupling;
- the fact that the mass of a gyroscope is constant (as signaling the absence of gravitational effects analogous to electromagnetic induction);
- namely, Hawking's spin dependent upper bound for the energy released on black hole collision (as arising from the fact that gravitomagnetic fields do work);
- Issues concerning previous approaches in the literature were clarified - namely, the limit of validity of the usual linear gravito-electromagnetic analogy, and the physical interpretation of the magnetic parts of the Riemann/Weyl tensors.

Acknowledgments

We thank Rui Quaresma (quaresma.rui@gmail.com) for the illustrations.

图 L．F．Costa，C．A．R．Herdeiro，Phys．Rev．D 78024021 （2008）
El L．F．Costa，C．A．R．Herdeiro，J．Natário，M．Zilhão（work in progress）

A．Papapetrou，Proc．R．Soc．London A 209 （1951） 248
囯 Robert M．Wald，Phys．Rev．D 6 （1972） 406
國 José Natário，Gen．Rel．Grav． 39 （2007） 1477
國 S．W．Hawking，Phys Rev．Lett． 261344 （1971）
（1958） 3015
國 L．Wylleman，N．Van Bergh，Phys．Rev．D 74084001 （2006）
雷 I．Ciufolini，J．A．Wheeler，＂Gravitation and Inertia，＂Princeton Series in Physics（1995）

囲 Edward G．Harris，Am．J．Phys． 59 （5）（1991） 421
囲 V．Braginsky，C．Caves，K．Thorne，Ph．Rev．D 15 （1977） 2047
Thank you

