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Introduction

I It is known, since the works of Mathisson and Papapetrou that
spinning particles follow worldlines which are not geodesics;

I In linearized theory, the gravitational force exerted on a spinning
pole-dipole test particle (hereafter a gyroscope) takes a form:
~FG = ∇(~BG .~S) similar to the electromagnetic force on a magnetic
dipole (Wald 1972).

I But only if the gyroscope is at �rest� in a stationary, weak �eld!

I This analogy may be cast in an exact form (Natário, 2007) using
the �Quasi-Maxwell� formalism, which holds if the gyroscope's
4-velocity is a Killing vector of a stationary spacetime.



Introduction

I It is known, since the works of Mathisson and Papapetrou that
spinning particles follow worldlines which are not geodesics;

I In linearized theory, the gravitational force exerted on a spinning
pole-dipole test particle (hereafter a gyroscope) takes a form:
~FG = ∇(~BG .~S) similar to the electromagnetic force on a magnetic
dipole (Wald 1972).

I But only if the gyroscope is at �rest� in a stationary, weak �eld!

I This analogy may be cast in an exact form (Natário, 2007) using
the �Quasi-Maxwell� formalism, which holds if the gyroscope's
4-velocity is a Killing vector of a stationary spacetime.

I There is an exact, covariant and fully general analogy relating the
two forces, which is made explicit in the tidal tensor formalism
(Costa & Herdeiro 2008).

I We will exemplify how this analogy provides new intuition for the
understanding of spin curvature coupling.



Force on Magnetic Dipole

FαEM =
DPα

dτ
=

1

2
F ;α
µν Qµν

I Fµν ≡ Maxwell tensor

I Qµν ≡ dipole moment tensor

IFor a magnetic dipole (~d = 0):

Qµν =


0 −dx −dy −d z

dx 0 µz −µy
dy −µz 0 µx

d z µy −µx 0

=
q

2m
Sµν
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=
q

2m
Sµν

I In Relativity, electric and magnetic dipole moments do not
exist as independent entities;

I ~d and ~µ are the time and space components of the dipole
moment 2-Form.
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=
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I Sµν ≡ Spin tensor;
I σ ≡ gyromagnetic ratio (= q/2m for classical spin)

I FαEM =
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=
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Force on Magnetic Dipole

FαEM =
DPα

dτ
=

1

2
σF ;α

µν Sµν

I If Pirani supplementary condition SµνUν = 0 holds, then
Sµν = εµντλSτUλ

I Sα ≡ spin 4-vector; de�ned as the vector that, in the particle's
proper frame, Sα = (0, ~S)
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Force on Magnetic Dipole

FαEM =
DPα

dτ
=

1

2
σF ;α

µν Sµν

I If Pirani supplementary condition SµνUν = 0 holds, then
Sµν = εµντλSτUλ

I Sα ≡ spin 4-vector; de�ned as the vector that, in the particle's
proper frame, Sα = (0, ~S)

FαEM =
DPα

dτ
= σε τλ

µν Fµν;αUλSτ = σB α
β Sβ

I Bαβ ≡ ?Fαγ;βUγ ≡ magnetic tidal tensor

I Measures the tidal e�ects produced by the magnetic �eld
Bα = ?FαγU

γ seen by the dipole of 4-velocity Uγ .



Force on Magnetic Dipole

FαEM = σB α
β Sβ

I Covariant generalization of the usual 3-D expression (valid only

in a frame where the dipole is at rest!):

~FEM = ∇(~µ.~B)

I Yields the force exerted on a magnetic dipole moving with
arbitrary velocity.



Force on Gyroscope

Papapetrou equation:

FαG ≡
DPα

Dτ
= −1

2
RαβµνU

βSµν



Force on Gyroscope

Papapetrou equation:

FαG ≡
DPα

Dτ
= −1

2
RαβµνU

βSµν

I If Pirani supplementary condition SµνUν = 0 holds, then
Sµν = εµντλSτUλ

DPα

Dτ
=

1

2
ε τλ
µν RµναβUλUβSτ = −H α

β Sβ

I Hαβ ≡�Magnetic part of the Riemann tensor�



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal e�ects:

I Suggests the physical analogy: Bαβ ←→ Hαβ

I Bαβ ≡ magnetic tidal tensor;
I Hαβ ≡ gravito-magnetic tidal tensor.



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal e�ects:

I σ = µ/S ≡ gyromagnetic ratio ⇒ equals 1 for gravity
⇒ ~µ↔ ~S



Magnetic-type Tidal Tensors

The electromagnetic force exerted on a magnetic dipole and the
gravitational force causing the non-geodesic motion of a spinning
test particle are analogous tidal e�ects:

I Relative minus sign: mass/charges of the same sign
attract/repel one another ⇒ antiparallel charge/mass currents
repel/attract.



Magnetic Tidal Tensor Gravito-Magnetic Tidal tensor

Antisymmetric part: Antisymmetric part:

B[αβ] = 1

2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Covariant form for of Einstein equations:

∇× ~B =
∂~E

∂t
+ 4π~j Rµν = 8π

(
Tµν − 1

2
gµνT

α
α

)
Trace: Trace:

Bαα = 0 Hα
α = 0

nI Covariant form for ITime-Time projection

∇ · ~B = 0



Magnetic Tidal Tensor Gravito-Magnetic Tidal tensor

Antisymmetric part: Antisymmetric part:

B[αβ] = 1

2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Space projection I Time-Space projection

of Maxwell equations: of Einstein equations:

F
αβ
;β = Jβ Rµν = 8π

(
Tµν − 1

2
gµνT

α
α

)
Trace: Trace:

Bαα = 0 Hα
α = 0

I Time projection ITime-Time projection

of Bianchi Identity: of Bianchi Identity:

?Fαβ;β = 0 ?Rγαγβ = 0



Electric-type Tidal Tensors

Electric-type tidal forces are described in an invariant way through
the wordline deviation equations:

which yield the acceleration of the vector δxα connecting two
particles with the same (Ciufolini, 1986) 4-velocity Uα � and the
same q/m ratio in the electromagnetic case.
(Notation: Fαβ ≡ Maxwell tensor, Rαβγσ ≡ Riemann tensor)



Electric-type Tidal Tensors

Electric-type tidal forces are described in an invariant way through
the wordline deviation equations:

I Suggests the physical analogy: Eαβ ←→ Eαβ
I Eαβ is the covariant derivative of the electric �eld

Eα = FαµUµ measured by the observer with (�xed) 4-velocity
Uα;



Electric-type Tidal Tensors

Electric-type tidal forces are described in an invariant way through
the wordline deviation equations:

I Suggests the physical analogy: Eαβ ←→ Eαβ
I Hence:

I Eαβ ≡ electric tidal tensor; Eαβ ≡ gravito-electric tidal tensor.



Analogy based on tidal tensors (Costa-Herdeiro 2008)

Electromagnetism Gravity

Worldline deviation:

D2δxα

Dτ2
=

q

m
Eαβδx

β

Geodesic deviation:

D2δxα

Dτ2
= −Eαβδxβ

Force on magnetic dipole:

DPβ

Dτ
=

q

2m
BαβSα

Force on gyroscope:

DPβ

Dτ
= −HαβSα

Maxwell Equations: Eqs. Grav. Tidal Tensors:

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

E[αβ] = 1
2
Fαβ;γU

γ E[αβ] = 0

Bαα = 0 Hα
α = 0

B[αβ] = 1
2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ



The Gravitational analogue of Maxwell's Equations

Electromagnetism Gravity

Maxwell Equations Eqs. Grav. Tidal Tensors

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

Bαα = 0 Hα
α = 0

E[αβ] = 1
2
Fαβ;γU

γ E[αβ] = 0

B[αβ] = 1
2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Strikingly similar when the setups are stationary in the
observer's rest frame (since Fαβ;γU

γ and ?Fαβ;γU
γ vanish).



The Gravitational analogue of Maxwell's Equations

Electromagnetism Gravity

Maxwell Equations Eqs. Grav. Tidal Tensors

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

Bαα = 0 Hα
α = 0

E[αβ] = 1
2
Fαβ;γU

γ E[αβ] = 0

B[αβ] = 1
2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Charges: the gravitational analogue of ρc is 2ρm + Tα
α

(ρm + 3p for a perfect �uid) ⇒ in gravity, pressure and all
material stresses contribute as sources.



The Gravitational analogue of Maxwell's Equations

Electromagnetism Gravity

Maxwell Equations Eqs. Grav. Tidal Tensors

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

Bαα = 0 Hα
α = 0

E[αβ] = 1
2
Fαβ;γU

γ E[αβ] = 0

B[αβ] = 1
2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Ampére law: in stationary (in the observer's rest frame)
setups, equations B[αβ] and H[αβ] match up to a factor of 2 ⇒
currents of mass/energy source gravitomagnetism like currents
of charge source magnetism.



The Gravitational analogue of Maxwell's Equations

Electromagnetism Gravity

Maxwell Equations Eqs. Grav. Tidal Tensors
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B[αβ] = 1
2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Absence of electromagnetic-like induction e�ects in gravity:

I Eµγ always symmetric ⇒ no gravitational analogue to
Faraday's law of induction!



The Gravitational analogue of Maxwell's Equations

Electromagnetism Gravity

Maxwell Equations Eqs. Grav. Tidal Tensors

Eαα = 4πρc Eαα = 4π (2ρm + Tα
α)

Bαα = 0 Hα
α = 0

E[αβ] = 1
2
Fαβ;γU

γ E[αβ] = 0

B[αβ] = 1
2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

I Absence of electromagnetic-like induction e�ects in gravity:

I Induction term ?Fαβ;γU
γ in B[αβ] has no counterpart in H[αβ]

⇒ no gravitational analogue to the magnetic �elds induced by
time varying electric �elds.



Magnetic dipole vs Gyroscope

Electromagnetic Force
on a Magnetic Dipole

F
β
EM =

q

2m
BαβSα

Gravitational Force
on a Spinning Particle

F
β
G = −HαβSα

The explicit analogy between F
β
EM and F

β
G is ideally suited to:

I Compare the two interactions: amounts to compare Bαβ and
Hαβ , which is crystal clear from the equations for tidal tensors:

Magnetic Tidal Tensor Gravito-Magnetic Tidal tensor
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2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ H[αβ] = −4πεαβσγJσUγ

Bαα = 0 Hα
α = 0



Magnetic dipole vs Gyroscope

Electromagnetic Force
on a Magnetic Dipole

F
β
EM =

q

2m
BαβSα

Gravitational Force
on a Spinning Particle

F
β
G = −HαβSα

The explicit analogy between F
β
EM and F

β
G is ideally suited to:

I Compare the two interactions: amounts to compare Bαβ and
Hαβ , which is crystal clear from the equations for tidal tensors:

I Unveils similarities between the two forces which allow us
visualize, in analogy with the more familiar electromagnetic
ones, gravitational e�ects which are not transparent in the
Papapetrou's original form.

I and fundamental di�erences which prove especially
enlightening to the understanding of spin-curvature coupling.



Some Fundamental Di�erences

Electromagnetic Force
on a Magnetic Dipole

F
β
EM =

q

2m
BαβSα

Gravitational Force
on a Spinning Particle

F
β
G = −HαβSα

I Bαβ is linear, whereas Hαβ is not

I In vacuum H[αβ] = 0 (symmetric tensor);

I B[αβ] = 1
2
? Fαβ;γU

γ 6= 0 (even in vacuum)

I HαβU
β = 0 (spatial tensor) ⇒ F

β
GUβ = 0 (it is a spatial

force).

I BαβU
β 6= 0⇒ F

β
EMUβ 6= 0 (non-vanishing time projection!)



Symmetries of Tidal tensors

Electromagnetic Force
on a Magnetic Dipole

F
β
EM =

q

2m
BαβSα

Magnetic Tidal Tensor

B[αβ] = 1

2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ

Gravitational Force
on a Gyroscope

F
β
G = −H β

α Sα

Gravito-magnetic Tidal Tensor

H[αβ] = −4πεαβσγJσUγ

I If the �elds do not vary along the test particle's wordline,
?Fαβ;γU

γ = 0 and the tidal tensors have the same symmetries.

I Allows for a similarity between the two interactions.



Gravitational Spin-Spin Force

F i
G '

3

c

[
(~r · ~J)

r5
δij + 2

r (iJ j)

r5
− 5

(~r · ~J)r i r j

r7

]
Sj

J↔µ
= F i

EM

An analogy already known from linearized theory (Wald, 1972), and
usually cast in the form:

~FG = −∇(~S · ~BG )+
∂

∂t

(
εijkφ,k

)
Si~ej

I Holds only if the gyroscope is at rest and the �elds are stationary.
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I Not suitable to describe motion; accounts only for spin-spin coupling.
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The gyroscope deviates from geodesic motion even in the absence of
rotating sources (e.g. Schwarzschild spacetime).

An e�ect readily visualized using the explicit analogy (always valid!!):

Force on a Magnetic Dipole

F
β
EM =

q

2m
BαβSα

Force on a Gyroscope

F
β
G = −HαβSα

I It the magnetic tidal tensor, as seen by the test particle, that
determines the force exerted upon it;

I Hence the gyroscope deviates from geodesic motion by the same
reason that a magnetic dipole su�ers a force even in the coulomb
�eld of a point charge: in its �rest� frame, there is a non-vanishing
magnetic tidal tensor.



Symmetries of Tidal tensors

Electromagnetic Force
on a Magnetic Dipole

F
β
EM =

q

2m
BαβSα

Magnetic Tidal Tensor

B[αβ] = 1

2
? Fαβ;γU

γ − 2πεαβσγ j
σUγ

Gravitational Force
on a Gyroscope

F
β
G = −H β

α Sα

Gravito-magnetic Tidal Tensor

H[αβ] = −4πεαβσγJσUγ

I If the �elds vary along the test particle's wordline, the two
interactions di�er signi�cantly.

I In vacuum, H[αβ] is always symmetric, whereas Bαβ is not :

B[αβ] = 1
2
? Fαβ;γU

γ .



Radial Motion in Coulomb Field

I The dipole sees a time varying electric �eld;

I Thus, B[αβ] = 1
2
? Fαβ;γU

γ 6= 0

I F i
EM =

q

2m
B i
α Sα = γ

qQ

2mr3
(~v × ~S)i



Radial Motion in Schwarzschild

I No analogous gravitational e�ect: FαG = 0⇒ gyroscope moves
along a geodesic.



Scalar Invariants

The Riemann tensor (20 independent components) splits irreducibly
into three spatial tensors (Louis Bel, 1958):

Iin vacuum Fαβ = −Eαβ

R
γδ
αβ = 4

{
2Ũ[αŨ

[γ + g
[γ

[α

}
Ẽ δ]
β]

+2
{
εαβµνH̃µ[δŨγ]Ũν + εγδµνH̃µ[βŨα]Ũν

}
+εαβµνε

γδστ ŨµŨσ

{
F̃ντ + Ẽντ − gντ Ẽρρ

}
Fαβ ≡ ?R ?αµβν U

µUν

I Eαβ, Fαβ : spatial, symmetric tensors ⇒ 6 independent
components each;

I Hαβ : spatial, traceless tensor ⇒ 8 independent components

I Fαβ has no electromagnetic analogue.



Scalar Invariants

The Riemann tensor (20 independent components) splits irreducibly
into three spatial tensors (Louis Bel, 1958):

I in vacuum Fαβ = −Eαβ

R
γδ
αβ = 4

{
2Ũ[αŨ

[γ + g
[γ

[α

}
Ẽ δ]
β]

+2
{
εαβµνH̃µ[δŨγ]Ũν + εγδµνH̃µ[βŨα]Ũν

}
+εαβµνε

γδστ ŨµŨσ

{
F̃ντ + Ẽντ − gντ Ẽρρ

}
Fαβ ≡ ?R ?αµβν U

µUν

I Eαβ, Fαβ : spatial, symmetric tensors ⇒ 6 independent
components each;

I Hαβ : spatial, traceless tensor ⇒ 8 independent components

I Fαβ has no electromagnetic analogue.



Scalar Invariants

The Riemann tensor (20 independent components) splits irreducibly
into three spatial tensors:

I in vacuum Fαβ = −Eαβ

R
γδ
αβ = 4

{
2Ũ[αŨ

[γ + g
[γ

[α

}
Ẽ δ]
β]

+2
{
εαβµνH̃µ[δŨγ]Ũν + εγδµνH̃µ[βŨα]Ũν

}
+εαβµνε

γδστ ŨµŨσ

{
F̃ντ + Ẽντ − gντ Ẽρρ

}
I Eαβ and Hαβ completely encode the 14 (6+8) independent

components of the Riemann tensor in vacuum (Weyl Tensor).



Scalar Invariants

Although each of these spatial tensors is determined by the
4-velocity Uα of the observer measuring it:

Eαβ ≡ RαµβνU
µUν

Hαβ ≡ ?RαµβνU
µUν

it can be shown that the following expressions are observer
independent (in vacuum)::

EαγEαγ −HαγHαγ =
1

8
RαβγδR

αβγδ

EαγHαγ =
1

16
Rαβγδ ? R

αβγδ

I gravitational tidal tensors form scalar invariants!



Scalar Invariants

I in vacuum

EαγEαγ −HαγHαγ =
1

8
RαβγδR

αβγδ

EαγHαγ =
1

16
Rαβγδ ? R

αβγδ

I Formally analogous to the electromagnetic scalar invariants:

~E 2 − ~B2 = −1
2
FαβF

αβ

~E .~B = −1
4
Fαβ ? F

αβ



Scalar Invariants

I in vacuum

EαγEαγ −HαγHαγ =
1

8
RαβγδR

αβγδ

EαγHαγ =
1

16
Rαβγδ ? R

αβγδ

I Formally analogous to the electromagnetic scalar invariants:

~E 2 − ~B2 = −1
2
FαβF

αβ

~E .~B = −1
4
Fαβ ? F

αβ

I This is a purely formal analogy, relating electromagnetic
�elds with gravitational tidal tensors (which are one order
higher in di�erentiation!)



Scalar Invariants � Electromagnetism

~E 2 − ~B2 = −1
2
FαβF

αβ

~E .~B = −1
4
Fαβ ? F

αβ

I ~E .~B = 0 and ~E 2 − ~B2 > 0 ⇒ there are observers for which

the magnetic �eld ~B vanishes.

I ~E .~B = 0 and ~E 2 − ~B2 < 0 ⇒ there are observers for which

the electric �eld ~E vanishes.



Scalar Invariants � Electromagnetism

~E 2 − ~B2 = −1
2
FαβF

αβ

~E .~B = −1
4
Fαβ ? F

αβ

I ~E .~B = 0 and ~E 2 − ~B2 > 0 ⇒ there are observers for which

the magnetic �eld ~B vanishes.

I ~E .~B = 0 and ~E 2 − ~B2 < 0 ⇒ there are observers for which

the electric �eld ~E vanishes.

I ~E 2 − ~B2 and ~E .~B are the only algebraically independent
invariants one can de�ne from the Maxwell tensor Fαβ .



Scalar Invariants � Gravity (Vacuum)

In vacuum, one can construct 4 independent scalar invariants from
Riemann tensor (would be 14 in general):

EαγEαγ −HαγHαγ =
1

8
RαβγδR

αβγδ ≡ 1

8
R.R

EαγHαγ =
1

16
Rαβγδ ? R

αβγδ ≡ 1

16
R.?R

EαβEβγEγα − 3EαβHβ
γHγ

α =
1

16
R
αβ
λµR

λµ
ρσR

ρσR
ρσ
αβ ≡ A

Hα
βHβ

γHγ
α − 3EαβEβγHγ

α =
1

16
R
αβ
λµR

λµ
ρσR

ρσ ? Rρσαβ ≡ B

I R.?R = 0 and R.R 6= 0 is not su�cient to ensure that there

are observers for which Hαγ (or Eαγ) vanishes.

I Needs also M ≡ I 3/J2 − 6 to be real positive, where

I ≡ 1

8
R · R +

i

8
?R · R; J ≡ A− iB



Scalar Invariants � Gravity (Vacuum)

In vacuum, one can construct 4 independent scalar invariants from
Riemann tensor (would be 14 in general):

EαγEαγ −HαγHαγ =
1

8
RαβγδR

αβγδ ≡ 1

8
R.R

EαγHαγ =
1

16
Rαβγδ ? R

αβγδ ≡ 1

16
R.?R

EαβEβγEγα − 3EαβHβ
γHγ

α =
1

16
R
αβ
λµR

λµ
ρσR

ρσR
ρσ
αβ ≡ A

Hα
βHβ

γHγ
α − 3EαβEβγHγ

α =
1

16
R
αβ
λµR

λµ
ρσR

ρσ ? Rρσαβ ≡ B

I M ≥ 0 (real), R.?R = 0 and R.R > 0 ⇒ there are observers

for which Hαγ vanishes (�Purely Electric� spacetime) .

I M ≥ 0 (real), R.?R = 0 and R.R < 0 ⇒ there would be
observers for which Eαγ vanishes (but there are no known
�Purely Magnetic� vacuum solutions; conjecture: do not exist)



Kerr metric:


EαγEαγ −HαγHαγ ≈

6m2

r6
> 0; I 3 = 6J2 (Petrov D)

EαγHαγ ≈
18Jm cos θ

r7
= 0 in the plane θ = π/2

I In the equatorial plane θ = π/2, there are observers for which
locally Hαγ = 0 :

I Observers such that vφ ≡ Uφ

Ut
=

a2

a2 + r2
(not the

�co-rotating� observers!)



I Impossible in the electromagnetic analog.

I A moving dipole sees a time-varying electromagnetic �eld;

I Thus Bαβ must be non vanishing (consequence of

∇× ~B = ∂~E/∂t):

B[αβ] =
1

2
? Fαβ;γU

γ 6= 0⇒ Bαβ 6= 0



Spinning Charge:


~E 2 − ~B2 =

q2

r4
− µ2(5 + 3 cos 2θ)

2r6
> 0

~E .~B =
2µq cos θ

r5
= 0 in the plane θ = π/2

I In the equatorial plane θ = π/2, there are observers for which
locally ~B = 0:

I Observers such that vφ ≡ Uφ

Ut
=

J

2mr2
(not the �co-rotating�

observers!)



Spinning Charge vs Spinning mass

I For r →∞, the two velocities asymptotically match! (up to a
factor of 2)



I No precession: I Gyroscope precesses:

I ~B = 0 ⇒ d~S

dt
= 0 I

d~S

dt
6= 0

I There is a Force applied: I No Force on Gyroscope:

Bαβ 6= 0⇒ FαEM =
q

2m
BβαSβ 6= 0 Hαβ = 0⇒ FαG = −HβαSβ = 0

(consequence of ∇× ~B = ∂~E/∂t)



Time projection of FαEM in the dipole's proper frame:

FαEMUα = −B i0µi =
∂~B

∂t
.~µ=

∂~B

∂t
.~nAI =

∂Φ

∂t
I = −I

˛
loop

~E . ~ds

I The magnetic dipole may be thought as a small current loop.~E

(Area of the loop
A = 4πa2; I ≡ current through the loop, ~n ≡unit vector normal to the loop)

I The magnetic dipole moment is given by ~µ = IA~n



Time projection of FαEM in the dipole's proper frame:

FαEMUα = −B i0µi =
∂~B

∂t
.~µ =

∂~B

∂t
.~nAI =

∂Φ

∂t
I= −I

˛
loop

~E . ~ds

I The magnetic dipole may be thought as a small current loop.~E

(Area of the loop
A = 4πa2; I ≡ current through the loop, ~n ≡unit vector normal to the loop)

I ~BA~n = Φ ≡ magnetic �ux trough the loop



Therefore, by Faraday´s law of induction:

FαEMUα = −B i0µi =
∂~B

∂t
.~µ =

∂~B

∂t
.~nAI =

∂Φ

∂t
I = −I

˛
loop

~E . ~ds

I ~E ≡ Induced electric �eld

I Hence FαEMUα is minus the power transferred to the dipole by
Faraday's law of induction.



I FαEMUα = DE/dτ is minus the power transferred to the dipole
by Faraday's law of induction;

I yields the variation of the energy E as measured in the dipole's
center of mass rest frame;

I is re�ected in a variation of the dipole's proper mass
m = −PαUα



Time Projection of FαG � no gravitational induction

Since Hαβ is a spatial tensor, we always have

FαGUα = −dm

dτ
= 0

I No work is done by induction ⇒ the energy of the gyroscope,
as measured in its center of mass frame, is constant;

I the proper mass m = −PαUα of the gyroscope is constant.

I Spatial character of gravitational tidal tensors precludes
induction e�ects analogous to the electromagnetic ones.



Time Projection of FαG � no gravitational induction
Example: A mass loop subject to the time-varying �gravitomagnetic
�eld� of a moving Kerr Black Hole
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Time Projection of FαG � no gravitational induction
Example: A mass loop subject to the time-varying �gravitomagnetic
�eld� of a moving Kerr Black Hole



Time components on arbitrary frames

I Electromagnetism:
In an arbitrary frame, in which the dipole has 4-velocity
Uβ = γ(1, ~v), the time component of the force exerted on a
magnetic dipole is:

(FEM)0 ≡ −DE

dτ
=

F
β
EMUβ

γ
− F i

EMvi = −
(
1

γ

dm

dτ
+ F i

EMvi

)
≡ −(Pmech + Pind )

where E ≡ −P0 is the energy of the dipole and we identify:

I Pind =
1

γ

dm

dτ
= −F βEMUβ/γ ≡ induced power

I Pmech = F i
EMvi �mechanical� power transferred to the dipole

by the 3-force F i
EM exerted upon it.



Static Observers � Electromagnetism

(FEM)0 =
q

2m
Bα0S

α = ?Fαγ;0U
γSα = 0

I no work is done on the magnetic dipole.

I Related to a basic principle from electromagnetism: the total
amount of work done by a static magnetic �eld on an
arbitrary system of currents is zero.

~F = q~v × ~B ⇒ ~F ⊥ ~v

(Lorentz Force on each individual charge)



Static Observers � Electromagnetism

I When the �elds are stationary in the observer's rest frame,
(FEM)0 = 0⇒ no work is done on the magnetic dipole.

I Pmech and Pind exactly cancel out
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Static Observers � Electromagnetism

I When the �elds are stationary in the observer's rest frame,
(FEM)0 = 0⇒ no work is done on the magnetic dipole.

I Pmech and Pind exactly cancel out.



Static Observers � Gravity

I In gravity, since those induction e�ects are absent, such
cancellation does not occur:

(FG )0 = −DE

dτ
= −F i

Gvi 6= 0

I Therefore, the stationary observer must measure a non-zero
work done on the gyroscope.

I That is to say, a static �gravitomagnetic �eld� (unlike its
electromagnetic counterpart) does work.

I And there is a known consequence of this fact: the spin
dependent upper bound for the energy released when two black
holes collide, obtained by Hawking (1971) from the area law.

I For the case with spins aligned, from Hawking's expression one
can infer a gravitational spin-spin interaction energy (Wald,
1972).



Static Observers � Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin
S ≡
√
SαSα falling along the symmetry axis of a larger Kerr black

hole of mass m and angular momentum J = am.
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Static Observers � Gravitational spin interaction

Take the gyroscope to be a small Kerr black hole of spin
S ≡
√
SαSα falling along the symmetry axis of a larger Kerr black

hole of mass m and angular momentum J = am.

I The time component of the force acting on the small black
hole is given by:

(FG )0 ≡
DP0

Dτ
= −dE

dτ
= −

2ma
(
3r2 − a2

)
U rS

(r2 + a2)3

Integrating this equation from in�nity to the horizon one
obtains

ˆ r+

∞
(FG )0 ≡ ∆E =

aS

2m
[
m +

√
m2 − a2

] ,
which is precisely Hawking's spin-spin interaction energy for
this particular setup.



Conclusions
I The tidal tensor formalism unveils an exact, fully general analogy

between the force on a gyroscope and on a magnetic dipole;
I at the same time it makes transparent both the similarities and key

di�erences between the two interactions;
I The non-geodesic motion of a spinning test particle not only can be

easily understood, but also exactly described, by a simple
application of this analogy.

I This analogy sheds light on important aspects of spin-curvature
coupling;

I the fact that the mass of a gyroscope is constant (as signaling
the absence of gravitational e�ects analogous to
electromagnetic induction);

I namely, Hawking's spin dependent upper bound for the energy
released on black hole collision (as arising from the fact that
gravitomagnetic �elds do work);

I Issues concerning previous approaches in the literature were clari�ed
� namely, the limit of validity of the usual linear
gravito-electromagnetic analogy, and the physical interpretation of
the magnetic parts of the Riemann/Weyl tensors.
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