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The Newtonian Analogue

Euler potential.
The gravitational field of 2 static masses m1 and m2 at a fixed distance
2α apart is:

2α

z

r1

r2
r

m1

0

m2

VE(r) = − Gm1

|r − αẑ|
− Gm2

|r + αẑ|
,

r1 = |r − αẑ| and r2 = |r + αẑ|.

In geometrized units α (which normally has units of length) has
spin-parameter dimensions as well.
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The Newtonian Analogue

We will study this problem in Spheroidal coordinates (ξ, η, φ)
where:

ξ =
r1 + r2

2α
, η =

r2 − r1
2α

.

The relationship to Cartesian coordinates is:

x = α
√

(1 + ξ2)(1− η2) cosφ

y = α
√

(1 + ξ2)(1− η2) sinφ

z = αξη.

In these coordinates the Euler potential becomes:

V (ξ, η) = − GMξ

α(ξ2 + η2)

3 / 20



Similarities and Differencies
Differencies

Euler problem has no horizon.

The parameter α has different physical significance in these two
problems. For the Kerr metric α is the spin of the black hole. In
Euler the α parameter is simply a distance. However α has similar
implications for the gravitational field of the two problems.

In Kerr spacetime the prograde and retrograde orbits are distinct
due to the frame dragging effect caused by the spin of Kerr metric.
In Euler the prograde and retrograde orbits become identical
under the transformation φ→ −φ .
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Similarities and Differencies
3rd Integral

The Carter constant for the Kerr metric is:

Q = p2θ + cos2 θ

[
(1− E2)α2 +

L2
z

sin2 θ

]
In oblate Euler the 3rd Integral of motion (Carter-like constant)
yields the same form:

QN = p2θ + cos2 θ

[
(1− E2)α2 +

L2
z

sin2 θ

]
if one makes the following replacements: η → cos θ, pθ → pη

− sin θ and

EN → 1−E2

2 .
Both are bilinear with respect to momenta.
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Similarities and Differencies
ISCO

Euler (oblate version) has an ISCO radius (like Kerr). If one considers
a circular orbit on the equatorial plane, the coresponding effective
potential is:

Veff = VE(ρ, z = 0) +
L2
z

2ρ2
= − GM√

ρ2 − α2
+
L2
z

2ρ2

In spheroidal coordinates:

Veff = −GM
αξ

+
L2
z

2α2(ξ2 + 1)

There is an ISCO when: V ′eff = V ′′eff = 0. This leads to:

ξISCO =
√

3
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Similarities and Differencies
Orbits

Bound geodesic orbits in Euler.
3 fundamental frequencies for Euler orbits:

Ωr for radial oscillations (eccentric orbits)

Ωθ for oscillations around equator (non-planar orbits)

Ωφ rotations (orbital winding)
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Similarities and Differencies
Orbits

A bound orbit in Euler lays between two ellipses (ξmin ,ξmax) and
within a hyperbola (−ηmax, ηmax).

ξ = const is an ellipse and η = const is an hyperbola. If we view the
orbit in spherical coordinates : r = aξ, θ = cos−1 η (the analogue of BL
Kerr coordinates) the orbit lays within two spheres and two planes.
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Similarities and Differencies
Fundamental Frequencies

Analytical expressions for Euler/Kerr:

Ωr =
πK(k)

α2z+[K(k)− E(k)]X + Y K(k)

Ωθ =
πβ
√
z+X/2

α2z+[K(k)− E(k)]X + Y K(k)

Ωφ =
ZK(k) +XLz[Π(π2 , z−, k)−K(k)]

α2z+[K(k)− E(k)]X + Y K(k)

with K,E,Π elliptic integrals of 1st, 2nd, and 3rd type.
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Similarities and Differencies
Fundamental Frequencies

X, Y, Z for Euler

X =

∫ r2

r1

dr√
Vr
, Y =

∫ r2

r1

r2√
Vr
dr, Z =

∫ r2

r1

Lzr
2

(r2 + α2)
√
Vr
dr

with
Vr = (E2 − 1)r4 + 2Mr3 + ((E2 − 1)α2 −Q− L2

z)r
2 + 2Mα2r −Qα2.

X, Y, Z for Kerr

X =

∫ r2

r1

dr√
Vr
, Y =

∫ r2

r1

r2√
Vr
dr, Z =

∫ r2

r1

Lzr
2 − 2Mr(Lz − αE)

(r2 − 2Mr + α2)
√
Vr

dr

with Vr = (E2 − 1)r4 + 2Mr3 +
[
(E2 − 1)α2 −Q− L2

z

]
r2 +

2M
[
(Lz − αE)2 +Q

]
r −Qα2.
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Similarities and Differencies
Fundamental Frequencies

The rest quantities:

β = a2(1− E2),

while z± are related with the θ-oscillation. By setting z = cos θ,
z± are the roots of the potential Vθ governing the θ-oscillations.

Vθ = Q− z
[
α2(1− E2) +

L2
z

1− z

]
and k =

√
z−/z+.
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Similarities and Differencies
Isofrequency pairs

There are pairs of orbits with the same frequencies triplets.
For equatorial orbits:

Kerr Euler

For Kerr Warburton, N; Barack, L; Sago, N PRD 86 104041
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Similarities and Differencies
Isofrequency pairs

a = 0.4M , (Ωr,Ωφ) = (0.05, 0.286742)
(e1, p1, θmin1) = (0.2, 0.7333, π/2),
(e2, p2, θmin2) = (0.54, 0.0.778, π/2).

13 / 20



Similarities and Differencies
Isofrequency pairs

For non equatorial orbits:
Kerr Euler

For Kerr Warburton, N; Barack, L; Sago, N PRD 86 104041
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Similarities and Differencies
Isofrequency pairs

a = 0.4M , (Ωr,Ωθ,Ωφ) = (0.032, 0.683734, 0.4),
(e1, p1, θmin1) = (0.12, 0.5335, 0.3861),
(e2, p2, θmin2) = (0.0658, 0.5107, 0.3964).
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Similarities and Differencies
Forces

In order to check the argument of Kennefick, D; Ori, A PRD 53 4319
(1996), we apply an atificial force to a test body moving on circular
orbit.

F = −kv1− η2

αξ

which obeys the basic symmetries of dissipative back reaction self
force: reflection symmetric, φ-independent, decrease at large distance,
and where k << 1 and v is the velocity in spherial coordinates.
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Similarities and Differencies
Forces

p = 5, e = 0 and θmin = 1
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Similarities and Differencies
Forces

p = 0.4201357, e = 0 and θmin = 1.36 Resonance Ωr = 2Ωθ.
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Ongoing work

Using SF in the Newtonian problem to understand the evolution
of an orbit near a resonance (Ωr/Ωθ = p/q).

If GR is not correct?
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THANK YOU
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