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100 years of General Relativity
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A brief cosmologist’s view

L = R
2 + Lm

L = R
2 − Λ + Lm

L = R
2 −

1
2(∇φ)2 − V (φ) + Lm

L = R
2 −X − V (φ) + Lm

L = R
2 +K(X,φ)− V (φ) + Lm

L = f(φ)R2 +K(X,φ)− V (φ) + Lm
L = f(X,φ)R2 +K(X,φ)− V (φ) + Lm
L = f(X,φ)R2 +K(X,φ)− V (φ)−G(X,φ)�φ+ Lm
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The Horndeski Lagrangian

L =
R

2
+

4∑
i=2

Li + Lm

It is the most general scalar field theory in 4D with second order
equations of motion

Found by Horndeski in 1975

Rediscovered by Deffayet et al. in 2011

Includes all other models (quintessence, k-essence,
scalar-tensor, Galileon, etc.)
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The Horndeski Lagrangian

L =
R

2
+

4∑
i=2

Li + Lm

It is the most general scalar field theory in 4D with second order
equations of motion

L2 = K(φ,X)

L3 = −G3(φ,X)�φ

L4 = G4(φ,X)R+G4,X

[
(�φ)2 − (∇µ∇νφ)(∇µ∇νφ)

]
L5 = G5(φ,X)Gµν(∇µ∇νφ)−

1

6
G5,X

[
(�φ)3 − 3(�φ)(∇µ∇νφ)(∇µ∇νφ)+

2(∇µ∇αφ)(∇α∇βφ)(∇β∇µφ)
]
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Recipe for self-tuning Lagrangians, in concept

L(φ, φ̇, a, ȧ) = a3
3∑
i=0

Zi(φ, φ̇, a)H i

where H is Hubble rate

Zi(φ, φ̇, a) = Xi(φ, φ̇)− k

a2
Yi(φ, φ̇)

and Xi and Yi are functions of the Horndeski or Deffayet free
functions.

1 The theory must admit ”the vacuum” for any value of the
cosmological constant;

2 This should remain true before and after the phase transition
where the cosmological constant jumps instantaneously by a
finite amount;

3 The theory allows for a non-trivial cosmology.
Charmousis et al. 2011
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Recipe for self-tuning Lagrangians, physically

We require that an abrupt change in the matter sector is absorbed
by the scalar field leaving the vacuum unchanged.

1 The field equation must be trivially satisfied at the critical
point to allow the field to self-adjust (Lcp(a, φ, φ̇) = Lcp(a));

2 At the critical point, the Hamiltonian must depend on φ̇ so
that the continuous field can absorb discontinuities of the
vacuum energy (H ∝ ρvac ⇒ Hcp ∝ f(φ̇));

3 The scalar field equation of motion must depend on Ḣ, such
that the cosmological evolution is non-trivial before screening
takes place (φ̇ ∝ Ḣ).

Charmousis et al. 2011
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The Fab 4

The Fab Four potentials (Charmousis et al.) are indeed able to
self-tune for k = −1
LJohn = VJ(φ)Gµν∇µφ∇νφ,
LPaul = VP(φ)Pµναβ∇µ∇αφ∇ν∇βφ,
LGeorge = VG(φ)R,
LRingo = VR(φ)G,

The cosmological models approach a patch of Minkowski with
k = −1 when it is an attractor, and describe matter
domination before that.

VJ, VP ∼“stiff fluid”; VG ∼“radiation”; and VR ∼“curvature”.

Unclear how to obtain a late time accelerated universe.
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What are the de Sitter Horndeski models?

The most general scalar-tensor cosmological models
with second order equations of motion that,
regardless of the content of the Universe, have a de
Sitter critical point.



Introduction Horndeski Self-tuning de Sittter Horndeski Linear Models Non-linear models

Self tuning to a spatially flat de Sitter vacuum

The Lagrangian for k = 0,

LH = a3
3∑
i=0

Xi(φ, φ̇)H i, Lm = −a3ρm

The Hamiltonian density

HH =

3∑
i=0

[
(i− 1)Xi +Xi,φ̇φ̇

]
H i

The field equation

− d

dt

[
a3

3∑
i=0

Xi,φ̇H
i

]
+ a3

3∑
i=0

Xi,φH
i = 0
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Self tuning to a spatially flat de Sitter vacuum

At the critical point, Hcp =
√

Λ.

The Lagrangian that at the critical point that satisfies all the
constraints, i.e., Lcp(a, φ, φ̇) = Lcp(a) and Hcp ∝ f(φ̇), is

Lcp
H =

3∑
i=0

Xi(φ, φ̇)Λi/2 = 3
√

Λh(φ) + φ̇ h,φ(φ)

Martin-Moruno, NJN, Lobo (2015)
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Self tuning to a spatially flat de Sitter vacuum

Lcp
H =

3∑
i=0

Xi(φ, φ̇)Λi/2 = 3
√

Λh(φ) + φ̇ h,φ(φ)

What are the Xi(φ, φ̇)?

1 Xi are terms linear in φ̇

Xi = 3
√

ΛUi(φ) + φ̇Wi(φ)

2 Xi are terms with a non-linear dependence on φ̇ which
contribution has to vanish at the critical point, i.e., Lcp

H = 0
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I.
Linear models
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The linear Lagrangian

Considering also matter, the linear Lagrangian and Hamiltonian are

L = LEH + Llinear + Lm H = HEH +Hlinear +Hm = 0

where
Llinear = a3

∑
i

(
3
√

ΛUi(φ) + φ̇Wi(φ)
)
H i

i = 0, ..., 3, subject to the constraint at the critical point,∑
i

Wi(φ)Λi/2 =
∑
j

Uj,φ(φ)Λj/2,

8 functions - 1 constraint = 7 free functions ⇒ Mag 7!
Wi and Ui are related to the the κj functions of the Horndeski
Lagrangian and Gj functions of the Deffayet et al. functions.
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Equations of motion

Together they give respectively the field equation for H ′ and the
Friedmann equation

H ′ = 3

∑
iH

i
(√

ΛUi,φ(φ)−HWi(φ)
)

∑
i iH

iWi(φ)

φ′ =
√

Λ
(1− Ω)H2 − 3

∑
i(i− 1)H i Ui(φ)∑

i iH
i+1Wi(φ)
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General considerations

1 Only W0 6= 0

2 Ui, Wj pair

3 Wi, Wj pair

4 Term-by-Term model (4 potentials)

5 Tripod model (3 potentials)
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1. Only W0 6= 0

H ′ = 3
∑
iH

i(
√

ΛUi,φ(φ)−HWi(φ))∑
i iH

iWi(φ)

For W0 6= 0 but W1 = W2 = W3 = 0 then H ′ is ill defined. This
can be understood by inspecting

Hlinear =
∑

i

[
3(i− 1)

√
ΛUi(φ) + i φ̇Wi(φ)

]
H i

=
∑

i

[
3(i− 1)

√
ΛUi(φ)

]
H i

independent of φ̇ ⇒ The model does not screen dynamically.
Only de Sitter attractor exists.
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2. Wi, Uj pair

From the constraint equation Wi = Uj,φΛ(j−i)/2 and then

H ′

H
= −3

i

[
1−

(
H√
Λ

)j−i−1
]

which again does not depend on φ.

When j − i− 1 < 0 and H �
√

Λ

H ′

H
= −3

i

means that we recover dust for i = 2.

We reach de Sitter when H →
√

Λ.
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3. Wi, Wj pair

From the constraint equation Wi = −Wj,φΛ(j−i)/2 and then

H ′

H
= −3

1− (H/
√

Λ)i−j

j − i(H/
√

Λ)i−j

again independent of φ.

For j > i and H �
√

Λ

H ′

H
= −3

j

means that we recover dust for j = 2.

We reach de Sitter when H →
√

Λ.
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4. Term-by-Term model

The constraint equation is satisfied for equal powers of Λ, i.e.
Wi = Ui,φ. We have then

8 functions – 4 constraints = 4 free potentials
Defining Ui,φ = Λ−i/2Vi,φ

H ′

H
= −3

(
1−
√

Λ

H

) ∑
i(H/

√
Λ)iVi,φ∑

i i(H/
√

Λ)iVi,φ

Here the field (and the background matter) contributes to the
dynamics of the Universe!

For H �
√

Λ and only one i component dominates H′

H = −3
i

means that we recover dust for i = 2.

We reach de Sitter when H →
√

Λ.
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5. Tripod model

Let us consider the 3 potentials U2, U3 and W2. The constraint
equation imposes U2,φΛ + U3,φΛ3/2 = W2Λ, then

H ′

H
= −3

2

U2,φ

W2

(
1−
√

Λ

H

)

For H �
√

Λ, H′

H = −3
2
U2,φ

W2
. Therefore we need:

U2,φ

W2
= 1, for M.D.

U2,φ

W2
=

4

3
, for R.D.

de Sitter is attained when H →
√

Λ.
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5. Tripod model: Energy densities

Example for: U2 = eλφ + 4
3e
βφ and W2 = λeλφ + βeβφ.

ln ( κρm )

ln ( κρ r )

ln ( κρ ϕ )

- 5 - 4 - 3 - 2 - 1 0 1

- 10

0

10

20

30

- log 10 ( 1+ z )
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5. Tripod model: Effective equation of state

w eff

- 5 - 4 - 3 - 2 - 1 0 1

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

- log 10 ( 1+ z )
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5. Tripod model: Abundances

Ωm

Ωr

Ωϕ

- 5 - 4 - 3 - 2 - 1 0 1

0.0

0.2

0.4

0.6

0.8

1.0

- log 10 ( 1+ z )
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Summary of Linear models

1 Only W0 6= 0
No dynamics. Only de Sitter exists.

2 Ui, Wj pair and Wi, Wj pair
The evolution of the Universe does not depend on the
material content or on the form of the field potentials.

3 Term-by-Term model (4 potentials)
Do depend on the field evolution but does not provide a
radiation dominated epoch.

4 The tripod model (3 potentials)
Is the most promising but the field contribution seems to be
too large at early times in the studied examples.

Look for non-linear models?
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II.
Non-linear models
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Non-linear Lagrangian

Lnl = a3
3∑
i=0

Xi(φ, φ̇)H i

To ensure that any non-linear dependence of the Lagrangian on φ̇
to vanish at the critical point,

3∑
i=0

Xi(φ, φ̇)Λi/2 = 0

Again, Xi are related to the the κj functions of the Horndeski
Lagrangian and Gj functions of the Deffayet et al. functions.
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Equations of motion

Proceed to shift-symmetric case and the redefinition ψ = φ̇

H ′ =
3(1 + w)Q0P1 −Q1P0

Q1P2 −Q2P1

ψ′ =
3(1 + w)Q0P2 −Q2P0

Q2P1 −Q1P2

where Q0, Q1, Q2, P0, P1, P2, are non-trivial functions of Xi and
H, and the average equation of state parameter of matter fluids is

1 + w =

∑
s Ωs(1 + ws)∑

s Ωs
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General considerations

1 X3 = ψn is the dominant contribution

2 X2 = ψn is the dominant contribution

3 X0 and X1 are the sole contributions

4 Extension with X0, X1 and X2
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1. X3 = ψn is the dominant contribution

When H �
√

Λ,

1 + weff ' 2

3
(1 + w), for

| (2X3 + ψX3,ψ)X3,ψψ|
| (3X3,ψ + ψX3,ψψ)X3,ψ|

� 1

1 + weff ' 2

3
otherwise

Neither allow for weff corresponding to radiation and matter
domination.
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2. X2 = ψn is the dominant contribution

When H �
√

Λ,

weff ' w, for
| (1−X2 − ψX2,ψ)X2,ψψ|
| (2X2,ψ + ψX2,ψψ)X2,ψ|

� 1,

weff ' 0, otherwise

Either weff is too small today when compared with observational
limits or, Ωψ is too large in the early Universe.
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3. X0 and X1 are the sole contributions

When H �
√

Λ,
weff ' w,

Interesting but unfortunately, models with realistic initial
conditions are not driven to the critical point.

- 1 0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

h

ψ

w = 0
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4. Extension with X0, X1 and X2

Considering

X2(ψ) = αψn, X1(ψ) = −αψn +
β

ψm
, X0(ψ) = − β

ψm

ln (κρ m )

ln (κρ r )

ln (κρ ϕ )

-6 -4 -2 0

-20

-10

0

10

20

30

40

50

-log 10 (1+z)
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4. Extension with X0, X1 and X2

Considering

X2(ψ) = αψn, X1(ψ) = −αψn +
β

ψm
, X0(ψ) = − β

ψm

We can obtain a model with wψ = w0 + wa(1− a) s.t.
w0 = −0.98 and wa = 0.04

wψ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

z
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Summary of non-linear models

1 X3 = ψn is the dominant contribution
Does not allow for weff corresponding to radiation and matter
domination.

2 X2 = ψn is the dominant contribution
weff is too small today when compared with observational
limits or, Ωψ is too large in the early Universe.

3 X0 and X1 are the sole contributions
Models with realistic initial conditions are not driven to the
critical point.

4 Non-trivial combination of X0, X1 and X2

Can obtain a range of parameter space compatible with
observational limits.
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More to do

Need study of perturbations.

Look for combination of linear and non-linear models?
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