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Introduction

100 years of General Relativity
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Horndeski

The Horndeski Lagrangian

R 4
£:2+;£i+£m

It is the most general scalar field theory in 4D with second order
equations of motion

e Found by Horndeski in 1975
@ Rediscovered by Deffayet et al. in 2011

@ Includes all other models (quintessence, k-essence,
scalar-tensor, Galileon, etc.)



The Horndeski Lagrangian

R 4
= 5 i ﬁm
L= +;£,+

It is the most general scalar field theory in 4D with second order
equations of motion

Ly =

L3
Ly
Ls

K(¢,X)

—G3(9, X))o

Gu(¢. X)R + Gy x [(09)? — (V. V) (V*V”9)]
G5(¢, X) G (VIV79) —

£Gsx [(09)° = B(O9)(V, Vo) (V4 9"9) +
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Self-tuning

Recipe for self-tuning Lagrangians, in concept

3
L(¢,¢,a,0) = a® ) Zi(d, $,a) H
i=0
where H is Hubble rate
Zi(¢,¢,0) = Xi(¢,d) — —Yi(¢, 9)

and X; and Y; are functions of the Horndeski or Deffayet free
functions.

© The theory must admit "the vacuum” for any value of the
cosmological constant;

@ This should remain true before and after the phase transition
where the cosmological constant jumps instantaneously by a
finite amount;

© The theory allows for a non-trivial cosmology.

Charmousis et al. 2011



Self-tuning

Recipe for self-tuning Lagrangians, physically

We require that an abrupt change in the matter sector is absorbed
by the scalar field leaving the vacuum unchanged.

@ The field equation must be trivially satisfied at the critical
point to allow the field to self-adjust (Lcp(a, ¢, b) = Lep(a));

@ At the critical point, the Hamiltonian must depend on ng o)
that the continuous field can absorb discontinuities of the
vacuum energy (H X pyac = Hep < f(9));

© The scalar field equation of motion must depend on H, such
that the cosmological evolution is non-trivial before screening
takes place (¢ o H).
Charmousis et al. 2011



Self-tuning

The Fab 4

The Fab Four potentials (Charmousis et al.) are indeed able to
self-tune for k = —1

EJohn = ‘G(¢)GHVV#¢VV¢,

Loau = Vo($) PP,V 16V, V 59,

EGeorge = VG(¢)R,

ERingo = VR(¢)G,

@ The cosmological models approach a patch of Minkowski with
k = —1 when it is an attractor, and describe matter
domination before that.

o Vy, Vp ~"stiff fluid”; Vo ~"radiation”; and Vg ~ “curvature”.

@ Unclear how to obtain a late time accelerated universe.



de Sittter Horndeski

What are the de Sitter Horndeski models?

The most general scalar-tensor cosmological models
with second order equations of motion that,
regardless of the content of the Universe, have a de
Sitter critical point.



de Sittter Horndeski

Self tuning to a spatially flat de Sitter vacuum

The Lagrangian for k =0,

3

Ly=d*Y Xi(¢,§)H',  Lm=—a"pn
=0

The Hamiltonian density

1=0



de Sittter Horndeski

Self tuning to a spatially flat de Sitter vacuum

At the critical point, He, = V/A.

The Lagrangian that at the critical point that satisfies all the
constraints, i.e., Lep(a, ¢, ¢) = Lep(a) and Hep o< f(), is

3
£P =" Xi(¢, YA = 3VAI(S) + dhy(0)
1=0

Martin-Moruno, NJN, Lobo (2015)



de Sittter Horndeski

Self tuning to a spatially flat de Sitter vacuum

3

L =" Xi(¢, $)A? =3VAI(¢) + dhy(9)

=0
What are the X;(¢, ¢)?

Q@ X, are terms linear in ¢

X; = 3VAU;(¢) + oWi(9)

@ X, are terms with a non-linear dependence on qb which
contribution has to vanish at the critical point, i.e., L"f{p =0



Linear Models

Linear models



Linear Models

The linear Lagrangian

Considering also matter, the linear Lagrangian and Hamiltonian are

L= LEH + Llinear + Lm H = HEH + /Hlinear + Hm =0

where

Llinear = a3 Z (3\/KUZ(¢) + ¢Wz(¢)) Hl
i
i =0,...,3, subject to the constraint at the critical point,

S Wi(@)A? =D U o(¢)A/2,
i J

8 functions - 1 constraint = 7 free functions = Mag 7!
W; and U; are related to the the x; functions of the Horndeski
Lagrangian and G; functions of the Deffayet et al. functions.



Linear Models

Equations of motion

Together they give respectively the field equation for H' and the
Friedmann equation

S H (VAU o(0) — HWi(9))
> i H'Wi(9)
(1-Q)H?-3Y,(i — 1) H U;(9)
\/K Zi i HHlWi(?Z’)

H = 3




Linear Models

General considerations

Q@ Only Wy #0

Q U;, W; pair

Q@ W;, W; pair

© Term-by-Term model (4 potentials)
@ Tripod model (3 potentials)



Linear Models

. Only W, # 0

;o2 HY(VAU; 4(¢)—HWi(9))
H =3 > 1 HIW;(¢)

For Wy # 0 but Wi = Wy = W3 = 0 then H' is ill defined. This
can be understood by inspecting

Hinear = ;|30 = DVAU(9) +i 6 Wil)| !
= ¥, [36 - )VAUK@)] B

independent of ¢ = The model does not screen dynamically.
Only de Sitter attractor exists.




Linear Models

2. Wi, U; pair

From the constraint equation W,; = Uj-,qu(j_i)/2 and then

()

which again does not depend on ¢.
When j —i—1<0and H> VA
Hl

H
means that we recover dust for i = 2.

3

We reach de Sitter when H — v/A.



Linear Models

3. W, W; pair

From the constraint equation W; = —W, 4AU~)/2 and then

E = _3 1 - (H/\/K)Z_]
7 Ay

again independent of ¢.

Forj>iandH>>\/K
H 3
7=
means that we recover dust for j = 2.

We reach de Sitter when H — v/A.



Linear Models

4. Term-by-Term model

The constraint equation is satisfied for equal powers of A, i.e.
W; = U; 4. We have then

8 functions — 4 constraints = 4 free potentials
Defining U; 4 = A™/%V; 4

(VA S(HND) Vi
H > i(H/VR) Vg

H
Here the field (and the background matter) contributes to the
dynamics of the Universe!

For H > v/A and only one i component dominates % =_3

A
means that we recover dust for i = 2.

We reach de Sitter when H — v/A.



Linear Models

5. Tripod model

Let us consider the 3 potentials Uy, Us and W5. The constraint
equation imposes Up g A + U37¢A3/2 = WhA, then

H 2 Ws H
For H > VA, %’ = —%UQ’;’_ Therefore we need:
U-
Wij —1, for M.D.
Uy 4
“2¢ _ 2 for RD
W 3 or
de Sitter is attained when H — v/A.



Linear Models

5. Tripod model: Energy densities

Example for: Uy = e + %eﬂ‘z’ and Wy = Ae?® + eP?,

P mmm In( K,
30 TSN (kPm)
E \\\,-\ In(Kpr) 1
20 3l .
| S ~e In(kpy)
10; \\\\\ -
0F ===
-10¢| 1
-5 -4 -3 -2 -1 0 1

=log 40 (1+2)



Linear Models

5. Tripod model: Effective equation of state

-5 -4 -3 -2 -1 0 1

-log 10 (1+2)



5. Tripod model: Abundances

Linear Models
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Linear Models

Summary of Linear models

o OnIy Wo 75 0
No dynamics. Only de Sitter exists.
Q@ U;, Wj pair and W;, W pair
The evolution of the Universe does not depend on the
material content or on the form of the field potentials.
© Term-by-Term model (4 potentials)
Do depend on the field evolution but does not provide a
radiation dominated epoch.
Q The tripod model (3 potentials)
Is the most promising but the field contribution seems to be
too large at early times in the studied examples.

Look for non-linear models?



Non-linear models



Non-linear models

Non-linear Lagrangian

3
Lo =a*) " Xi(¢,$)H'
i=0
To ensure that any non-linear dependence of the Lagrangian on qﬁ
to vanish at the critical point,

3

1=0

Again, X; are related to the the x; functions of the Horndeski
Lagrangian and G; functions of the Deffayet et al. functions.



Non-linear models

Equations of motion

Proceed to shift-symmetric case and the redefinition ) = ¢

3(1+w)QoPr — Q1P

= Q1P — Q2P
W = 3(1+w)QoP — Q2Fy
Q2P1 — Q1 P

where (o, Q1, Q2, Py, P1, P>, are non-trivial functions of X; and
H, and the average equation of state parameter of matter fluids is

_ Zs Qs(1 + ws)

1
A Zs QS



Non-linear models

General considerations

Q@ X3 =" is the dominant contribution
Q@ Xs =" is the dominant contribution
© X, and X are the sole contributions
@ Extension with X, X7 and X»



Non-linear models

1. X3 =1" is the dominant contribution

When H > VA,

2 | (2X3 + 9 X3.4) X34yl
1+weg ~ =(1+4+w), for : . >1
¢ 3 ) | (33,5 + ¥ X3.pp) X3,0]

14+ weg =~ 3 otherwise

Neither allow for weg corresponding to radiation and matter
domination.



Non-linear models

2. X9 =" is the dominant contribution

When H > /A,
1—-Xo —9YXoy)X
Weff =~ W, for ( 2 = ¥ Xow) Xowul > 1,
| (2X2,4 + ¢ Xapp) Xoy|
weg ~ 0, otherwise

Either weg is too small today when compared with observational
limits or, 2 is too large in the early Universe.



3. Xy and X are the sole contributions

When H > VA,

Weff =~ W,

Interesting but unfortunately, models with realistic initial
conditions are not driven to the critical point.
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Non-linear models

4. Extension with Xy, X; and X5

Considering

Xo(¥) =, Xi(¥) = —a)" +

50F 7
----- - In(kp )

S<Z In(kp,) |

30} RN
“~. In(k,
20} s ke g)

10+ \~\~ 3

-10} ~
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Non-linear models

4. Extension with Xy, X; and X5

Considering

g
We can obtain a model with wy, = wy + we(1 — a) s.t.
wo = —0.98 and w, = 0.04

-04r 9
Wy

X)) =™, X1(¢) = —ap" + Xo() = -

-0.5
-0.6
-0.7
-0.8
-0.9

-1.0"- 1
0.0 0.5 1.0 15 2.0 2.5 3.0



Non-linear models

Summary of non-linear models

Q@ X3 =" is the dominant contribution
Does not allow for weg corresponding to radiation and matter
domination.

Q@ X5 =" is the dominant contribution
Wefr 1S too small today when compared with observational
limits or, €2 is too large in the early Universe.

© Xy and X, are the sole contributions
Models with realistic initial conditions are not driven to the
critical point.

@ Non-trivial combination of Xy, X7 and X5
Can obtain a range of parameter space compatible with
observational limits.



Non-linear models

More to do

@ Need study of perturbations.
@ Look for combination of linear and non-linear models?



	Introduction
	Horndeski
	Self-tuning
	de Sittter Horndeski
	Linear Models
	Non-linear models

