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Inflation and CMB Anisotropy
* Inflation can nicely explain the observed flatness, homogeneity

and isotropy of the present day’s Universe.
* Nearly scale-invariant, Gaussian and isotropic quantum fluctuations

can be natural sources of CIVIB anisotropies and large-scale structures.
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Large-Scale Anomalies of CMB

Broken scale invariance ? non-Gaussianity ?

* Suppression of angular power ¢ Cold spot vieia, 10083051
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Statistical Anisotropies ?
* Alignment of lower multipoles ¢ Hemispheric power asymmetry
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Copi, Huterer, Schwarz and Starkman (15)

- Octopole is unusally planar and
aligned with quadrupole. T(é)=Ty(e)[l + Aé-d

- Alignment is perpendicular to (1,0) = (230°, —16°) £ 24°
the Ecliptic plane. A = (0.066 4 0.021)  Planck 2015

- Dipolar modulation ?




* Anomalies are more or less statistically independent.

individually, but it is hard to realize
all anomalies within the ACDM model by chance.

. effects would , as they were detected by
both WMAP and Planck consistently and independently.

 While the foreground effects depend on frequencies,
the observed anomalies are almost independent of them.
* A variety of cosmological mechanisms

- Local voids - Pre-inflationary physics

_ Vector fields - Non-trivial topology

None have been demonstrated to be detectable

at the statistically significant level.
Schwarz, Copi, Huterer and Starkman, 1510.07929.



Pre-inflationary Anisotropy

* Aninitially anisotropic universe rapidly approaches an inflationary
universe in the presence of the positive potential energy.

Wald (84)

« Our Universe could naturally begin with a highly anisotropic state.

Gumrukcuoglu, Contaldi and Peloso (07) Pitrou, Pereira and Uzan (08)

- CMB anomalies could be identified as the consequences of
the

- requests the of inflation, namely 50-60 e-folds,

in order for the corresponding modes to be observed at the largest
possible scales of the CMB today.

- simple enough in the sense that it does not invoke any additional
anisotropic energy source.



* The Kasner-de Sitter solution provides a very good approximation
as the geometry of the primordial universe, interpolating the initial
anisotropic (t = 0) and the late-time de Sitter (t — o0) stages.

Ellis and MaCallum (69) , Gumrukcuoglu Contaldi and Peloso (07), Pitrou, Pereira and Uzan (08)

1
H 2(pi—3)
ds® = —dt? + Zsmh% 3Ht){ tanh (32 t) } dil??a

1=1 \ }

pr-:ng:l' |

1 l

- Kasner universeast = 0 Kasner(zn
ds? = —dt* + Z $2Pi dz

i=1

- de Sitter universe ast — oo

ds? ~ —dt? + e?Ht Z dx?



e Regularity at t = 0 is requested to find a well-defined adiabatic
vacuum and selects the branchofp; =1, p, =p; = 0.
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Power Spectrum from the KdS Universe
* (Quantization massless scalar field
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e In the initial adiabatic vacuum of the KdS universe
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e Scalar power spectrum suffers divergence on the plane, and
the significant backreaction make perturbative approach invalid.
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Quantum State in the Vicinity of Singularity

 The KdS universe = The planar Schwarzchild-de Sitter spacetime
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 Maximally-extended Kasner-de Sitter spacetime

t = const.
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- KdS universe (the shaded region) is influenced by the timelike singularity.

- The existence of singu

arity makes the quantum state unpredictable.

Horowitz and Marolf (95)

We adopt the new interpretation of KdS universe as the consequence
of the quantum tunneling from a regular lower-dimensional vacuum.



Anisotropic Inflation after Quantum Tunneling

* Initially, the x, directions are static and smoothly matched
to a lower-dimensional parent vacuum compactified on T2

ds? ~ —dt* + t*dr® + da? .
TZ
A transdimensional transition was argued in the context of the
landscape of multiple vacua in a higher-dimensional theory.

Blanco-Pillado, Schwartz-Perlov and Vilenkin (09), Carroll, Johnson and Randall (09)
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Decompactification within our 4D universe.
dS; x St - dS, dS, X S* — dS,

Blanco-Pillado and Salem (10) Adamek, Campo, and Niemeyer (10)
- Anisotropic spatial curvature leads to late-time anisotropic expansion,

which dominates over the primordial effects. Demianski and Doroshkevich (07)

Graham, Harnik and Rajendran (10)
= 0< 107

- Our T? compactification model is free from the late-time anisotropy.

* |nstanton transitions between 4D vacuum and 2D vacuum
on T? are mediated by Casimir interactions.

Arnold, Fornal & Ishiwata (11)

* Observational signatures from toy models describing the
decompactification from a 2D vacuum on T2 to 4D will be argued.



Models of Kasner-de Sitter Bubble Nucleation
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» KdS bubble nucleation in the vacuum of M, X T* |
dS., My x T

- As the lightcone limit of KdS universe is identical to 2d Milne,
the Milne wedge (M) can be smoothly replaced by the KdS universe.

-The modes of a massless scalar field are quantized on the global Cauchy
surface X stretched over the parent vacuum of M, X TZ2.
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» KdS bubble nucleation in the vacuum of dS, X T*

- Both the lightcone limits of the M region of dS, and KdS universe are
identical to 2d Milne, (M) can be smoothly replaced by the KdS universe.

-The modes of a massless scalar field are quantized on the global Cauchy
surface X stretched over the parent vacuum of dS, x T?.



Power Spectrum of a Massless Scalar Field

* The initial state from the parent vacuum of M, X T*
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* The initial state from the parent vacuum of dS, X T2
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e Time evolution inside the KdS bubble

* Power spectrum
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k=Fkcostl and k| = ksinf

Suppression as well as milder angular
variation of the power are compatible
with the CMB data.
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A large enhancement of the power on large
scales would conflict with the CMB data.




Summary

e Large-scale anomalies in the CMB may be caused by the nontrivial
modifications in the initial guantum states before onset of inflation.

* A naive quantization in the vacuum of 2D Milne universe leads to several
divergences, making the choice of the initial state highly

U

* We took the approach that the KdS universe is an outcome of quantum
tunneling from the regular universe with stabilized dimensions

- The vacuum of M, X T? leads to favorable features to explain to
the observed CMB anomalies.

- The vacuum of dS, X T?leads to a large enhancement of the power,
which easily conflicts with the current CMB data.
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Thank you.



