Stability of spatially homogeneous spacetimes with a positive comological constant

Filipe C. Mena

Universidade do Minho, Portugal

Joint work with Christian Lübbe (Queen Mary, Univ. London, U.K.)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The main questions

What's is the fate of the universe?

- How far does it depend on initial conditions?
- Are the models stable? In what sense?

Observations and models

On large scale our universe is almost spatially homogeneous.

The universe undergoes an accelerated expansion, suggesting a positive cosmological constant $\Lambda > 0$.

Questions arising

- What is the long-term evolution of an exact homogeneous spacetime?
- Are these predictions sensitive to perturbations, i.e. does the presence of small inhomogeneities alter the long term evolution?

イロト イヨト イヨト イ

Gibbons-Hawking, PRD, 1977

"Generic" expanding cosmological solutions to the EFEs with a positive cosmological constant Λ tend asymptotically in time to the De-Sitter solution.

Some previous results

- Spatially homogeneous solutions
- Some inhomogeneous exact solutions with symmetries (Barrow et al, 80's)
- Linear metric perturbations
- Second order perturbations

Theorem (M., JPA, 2010)

Let $g_{\alpha\beta}^{(0)}$ be the flat RW Λ -dust metric. Then

$$g_{\alpha\beta} = g_{\alpha\beta}^{(0)} + \sum_{i=1}^{n} \frac{1}{i!} g_{\alpha\beta}^{(i)},$$

is convergent and approaches the De-Sitter metric locally asymptotically in time.

(Wald, PRD, 1983) s (Barrow et al. 80's)

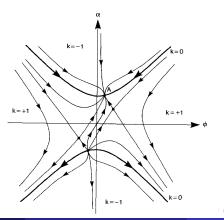
(Starobinski, JETP Lett., '79)

(Bruni, M., Tavakol, CQG, '02)

Asymptotic dynamics

Results with ODEs and Dynamical Systems

- Spatially homogeneous with scalar fields (Rendall, 2004)
- FLRW in Coley, "Dynamical Systems and Cosmology", 2003
- Linear pert. RW and Bianchi I (Woszczyna '92; Dunsby '93, M. and Alho, '14)



Asymptotic dynamics

Results with PDE theory

- Einstein-Maxwell-Yang-Mills fields (Friedrich, J. Diff. Geom., 1991)
- Non-linear stability for scalar fields (Ringström, Invent. Math., 2008)
- RW with $\gamma = 1/3$
- RW with $0 < \gamma < 1/3$

(Lübbe and Kroon, Ann. Phys., 2013)

(Rodnianski and Speck, J.Eur.Math.Soc., 2013)

General ideas

Take fully non-linear perturbation.

Prove

```
||g - g_{dS}|| \rightarrow 0 and ||K - K_{dS}|| \rightarrow 0
```

in some suitable norm.

Ochoose coordinates that bring the PDE system into a symmetric hyperbolic form for analyzing behaviour in the far future via energy estimates.

What about spatially homogeneous spacetimes?

Spatially homogeneous spacetimes

(M,g) has S_3 Lie group of isometries acting on spacelike hypersurfces Σ_t . If group acts simply transitively, then (M,g) is called Bianchi spacetime.

Bianchi spacetimes

Lie algebra generated by the Killing vector fields ξ

$$\begin{split} [\xi_i,\xi_j] &= C^k_{\ ij}\xi_k \,, \\ C^k_{\ ij} &= \varepsilon_{ijl}n^{kl} + a_i\delta^{\ k}_j - a_j\delta^{\ k}_i \,, \end{split}$$

onde ε_{ijk} is the Levi-Civita symbol and n^{ij} and a^i constants.

Class	Туре	n_1	n_2	n_3
	Ι	0	0	0
A(a = 0)	VIII	_	+	+
	IX	+	+	+
	V	0	0	0
$B\left(a\neq0\right)$	IV	0	0	+

Table: Types I, V and IX generalize RW models k = 0, -1 and +1, resp.

Filipe C. Mena (Univ. Minho)

Theorem (Wald, 1983)

Suppose we are given a spatially homogeneous (Bianchi) spacetime

- with ${}^{(3)}R \leq 0$ (not Bianchi IX),
- that is initially expanding,
- satisfies $G_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$ with $\Lambda > 0$,
- where $T_{\mu
 u}$ satisfies the dominant and strong energy conditions

Then this Bianchi spacetime evolves exponentially towards de Sitter space.

Due to the continued expansion, we observe that at late times

- spatial geometry and matter distribution are smoothed out,
- universe homogenises and isotropises,
- universe looks locally more and more like de-Sitter space,
- $\bullet\,$ no distinguishable features $\rightarrow\,$ no hair.

Conformal compactification

 $\tilde{g}=\Theta^2 g$

- "unphysical" or "compactified" spacetime \tilde{M} has boundary B and interior M.
- Θ such that $\Theta|_B = 0$ and $d\Theta|_B \neq 0$
- ${ ilde g}$ extends as a smooth non-degenerate Lorentzian metric on ${ ilde M}$
- But conformal compactification is not always possible. Need certain decay properties

Advantages

- Global patches into local patches, i.e. get a compactified local coordinate system (can get to $\mathscr{I}^+)$
- Coordinate system non-singular (no terms 1/x)
- Get a symmetric hyperbolic system

Theorem (Lübbe and Kroon, 2013)

Given Cauchy initial data for the Einstein-Euler system with $\Lambda > 0$ and $p = \frac{1}{3}\rho$. If the initial data is sufficiently close to data for RW with $p = \frac{1}{3}\mu$, same Λ and spatial curvature k = 1, then

- the development exists globally towards the future,
- is future geodesically complete,
- remains close to the RW solution.
- The stability result is fully non-linear.
- The result makes use of the conformal Einstein field equations (CEFE), originally due to Friedrich, adapted for radiation fluids (Einstein-Maxwell).
- The stability result can be extended as long as the reference space-time (background) is shown to be a regular solution of the CEFE.

< □ > < 同 > < 回 > < Ξ > < Ξ

The equations for Bianchi spacetimes with

DEC and SEC and ${}^{(0)}R \leq 0$ imply

$$\dot{H} \le \lambda^2 - H^2 \le 0 \Longrightarrow \lambda \le H \le \lambda \cosh\left(\lambda t\right) \Longrightarrow H = \lambda + o(e^{-2\lambda t})$$

as well as

$$0 \le 2\sigma^2 \le 6(H^2 - \lambda^2) \le 6\lambda^2 \sinh^{-2}(\lambda t) \Longrightarrow \sigma = o(e^{-\lambda t})$$

but this estimate is not enough.

Spacetimes non-conformally flat, so need to control the Weyl tensor

$$\begin{aligned} \partial_0(H^{\alpha\beta}) &= -3\theta H^{\alpha\beta} + 3\sigma^{(\alpha}{}_{\gamma}H^{\beta)\gamma} - \delta^{\alpha\beta}\sigma_{\gamma\delta}H^{\gamma\delta} \\ &+ 3n^{(\alpha}{}_{\gamma}(E^{\beta)\gamma} - \frac{1}{2}\pi^{\beta)\gamma}) - \frac{1}{2}n^{\gamma}{}_{\gamma}(E^{\alpha\beta} - \frac{1}{2}\pi^{\alpha\beta}) - \delta^{\alpha\beta}n_{\gamma\delta}(E^{\gamma\delta} - \frac{1}{2}\pi^{\gamma\delta}) \\ &- \varepsilon^{\gamma\delta(\alpha}(\partial_{\gamma} - a_{\gamma})(E^{\beta)}{}_{\delta} - \frac{1}{2}\pi^{\beta)}{}_{\delta}) - \varepsilon^{\gamma\delta(\alpha}\dot{u}_{\gamma}E^{\beta)}_{\gamma} \end{aligned}$$

・ロット (雪) (小田) (

We consider Einstein-Maxwell and Einstein-Euler systems with $\gamma = \frac{1}{3}$.

Using a 3 + 1-orthonormal frame approach one get can more precise decay rates.

Here $\lambda=\sqrt{\Lambda/3}$ and $L=e^{-\lambda t}$

$$\lambda < H < \lambda \coth(\lambda t)$$

$$0 < C_1 e^{\lambda t} \le L \le C_2 e^{\lambda t}$$

$$n_{ab}, a_a = O(L^{-1})$$

$$\sigma_{ab}, {}^{(3)}R = O(L^{-2})$$

$$\rho, p, q_a, \pi_{ab} = O(L^{-4})$$

$$E_a, B_a = O(L^{-2})$$

$$E_{ab}, H_{ab} = O(L^{-2})$$

Regular solution to the CEFE and stability

Summary of procedure

- Rescale the metric $\tilde{g}_{\mu\nu} = \Theta^2 g_{\mu\nu}$ with $\Theta = L^{-1}$
- Define conformal time $\tau = \int_0^t \frac{1}{L(s)} ds \Rightarrow \tau$ is finite at conformal infinity
- Use \tilde{g} -orthonormal frame \Rightarrow rescaled quantities are finite at conformal infinity.
- Bianchi spacetimes here give regular solution to the CEFE.
- Use them as reference spacetimes for the stability theorems.

The stability in more detail

- Give data at \mathscr{I}^+ and evolve back in conformal time
- Perturb a slice Σ nonlinearly close enough to Bianchi
- Since system is symmetry hyperbolic, use Kato's theorem (ARMA,1975)

Let $|| \cdot ||_m$ denote a Sobolev-like norm on the space of functions on Σ . Let $m \ge 4$ and \hat{w}_0 the perturbation on the initial data w_0 . There is ϵ such that if $||\hat{w}_0||_m < \epsilon$, then w_0 determines a unique (stable) solution w to the CEFE.

・ロト ・回ト ・ヨト ・

Theorem

Given a small perturbation of a Bianchi spacetime (except type IX) whose matter content is Einstein-Maxwell or a radiation fluid, then these 'almost Bianchi' spacetimes locally asymptote to de Sitter space at late times.

- The theorem shows that Wald's result is stable.
- Almost Bianchi spacetimes (except Bianchi IX) satisfy the cosmic no-hair conjecture, i.e locally homogenise and isotropise to locally approach de Sitter at late times.
- The physical spacetime has 'lost its hair'.
- However CEFE and conformal infinity retain the information of the 'approximate Bianchi-type' and matter model (hair style) in terms of non-vanishing rescaled quantities.

- Results are local and make no statement about the global spatial topology.
- For Bianchi IX Wald shows that if Λ is sufficienly large they also satisfy cosmic no-hair conjecture.
- If ${}^{(3)}R>0$ or $\Lambda=0$ then recollapse is possible (Lin & Wald 1990)
- For other trace-free energy momentum tensor (null fluids, Vlasov, conformal scalar field) the regular CEFE are expected \rightarrow generalisations seem possible. But at the moment no stability theorems using the CEFE are known.
- CEFE with non-trace-free matter? Work of Oliynyk (2015) may provide the first steps..