Perturbation and stability of higher dimensional black holes

Akihiro Ishibashi

GR 100 years in Lisbon
TECNICO, LISBON, 19 Dec. 2015
Introduction

Perturbation analysis:

• **GW emission** from a particle plunging into or orbiting around a BH

• **Stability** problem

 Stable ➔ final state of gravitational collapse

 Unstable ➔ New branch of solutions

• Information about the geometry: **Quasi-Normal Modes**

• Insights into **Uniqueness/non-uniqueness**

• Attempt to find **new, approximate solutions**

 (by deforming an existing solution)
Purpose of this talk

A brief overview of linear perturbation theory of higher dimensional black holes
Two major issues when formulating perturbation theory

- Fixing gauge ambiguity
 - Imposing suitable gauge conditions
 - or
 - Constructing manifestly gauge-invariant variables
Two major issues when formulating perturbation theory

- Fixing gauge ambiguity
 - Imposing suitable gauge conditions
 - Constructing manifestly gauge-invariant variables

- Reduction of perturbation equations to a simple, tractable form \textit{(master equation)}
 - Classifying perturbations into mutually decoupled groups
 - Separating variables
4D master equations

Static asymptotically flat vacuum case
Regge-Wheeler 57
Zerilli 70
charge case
Moncrief
-- Stability
Regge-Wheeler 57, Veshveshwara 70 ...

asymptotically AdS/dS case
Cardoso-Lemos
--- set of decoupled *self-adjoint* ODEs

Stationary Rotating vacuum (Kerr) case
Teukolsky 72
--- Stability
Press-Teukolsky 73
--- Whiting 89 ...

asymptotically AdS/dS case
Chambers-Moss 94
Classification Problem in Higher Dimensions

- $D>4$ General Relativity
 No uniqueness like $4D$ GR

Many unstable black (rotating) objects

Dynamical uniqueness theorem
Uniqueness holds for “stable” black objects
Master equations for higher dimensional black holes

- **Rotating BH case** ➔ Not separable in general (e.g., Durkee-Godazgar-Reall) still a long way from having a complete perturbation theory

 Progress in some special cases

 Cohomogeneity-one (odd-dim.) Myers-Perry BH

 \(D \geq 7 \) Kunduri-Lucietti –Reall 07 (Tensor-modes)

 \(5D \) Murata-Soda 08 (Tensor-Vector-Scalar modes)

 Single-spin (cohomogeneity-two) Myers-Perry

 \(D \geq 7 \) Kodama-Konoplya-Zhidenko 09

 Kundt spacetimes (e.g. Near-horizon geometry)

 Durkee-Reall 11

- **Static BH case** ➔ simpler and tractable:

 -- can reduce to a set of decoupled s.a. ODEs

 Kodama-AI 03
Background geometry

\[\mathcal{M}^D = \mathcal{N}^m \times \mathcal{K}^n \]

\[ds^2 = g_{ab}(y)dy^a dy^b + r^2(y)d\sigma_n^2 \]

\[g_{ab}(y) : m - \text{dim spacetime metric} \]

\[d\sigma_n^2 = \gamma_{ij}(z)dz^i dz^j : n - \text{dim Einstein metric} \]

\[R_{ij} = (n - 1)K\gamma_{ij} \]

\[K = \pm 1, 0 \]

-- corresponds to horizon-manifold

This metric can describe a fairly generic class of metrics
$m = 1 \quad y^a \to t \quad \text{FLRW universe} \quad ds^2 = -dt^2 + r(t)^2 d\sigma_n^2$
\(m = 1 \quad y^a \rightarrow t \quad \text{FLRW universe} \quad ds^2 = -dt^2 + r(t)^2 d\sigma_n^2 \)

\(m = 2 \quad y^a \rightarrow (t, r) \quad \text{Static (Schwarzschild-type) black hole} \)

\[ds^2 = -f(r) dt^2 + \frac{1}{f(r)} dr^2 + r^2 d\sigma_n^2 \]
\(m = 1 \quad y^a \rightarrow t \quad \text{FLRW universe} \quad ds^2 = -dt^2 + r(t)^2 d\sigma_n^2 \)

\(m = 2 \quad y^a \rightarrow (t, r) \quad \text{Static (Schwarzschild-type) black hole} \quad ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\sigma_n^2 \)

\(m \geq 3 \quad y^a \rightarrow (t, r, \mathbf{y}) \quad \text{Black-brane} \quad ds^2 = dy^2 - f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\sigma_n^2 \)
$m = 1 \quad y^a \to t \quad$ FLRW universe \quad $ds^2 = -dt^2 + r(t)^2 d\sigma_n^2$

$m = 2 \quad y^a \to (t, r) \quad$ Static (Schwarzschild-type) black hole

\[
ds^2 = -f(r) dt^2 + \frac{1}{f(r)} dr^2 + r^2 d\sigma_n^2
\]

$m \geq 3 \quad y^a \to (t, r, y) \quad$ Black-brane

\[
ds^2 = dy^2 - f(r) dt^2 + \frac{1}{f(r)} dr^2 + r^2 d\sigma_n^2
\]

$m = 4 \quad y^a \to (t, r, \theta, \phi) \quad$ Myers-Perry black hole (w/ single rotation)

$r \to r \cos \theta$

\[
ds^2 = \langle 4\text{-dim. Kerr type metric} \rangle + r^2 \cos^2 \theta d\sigma_n^2
\]

Kerr-brane

$r \to \text{const.} \quad ds^2 = \text{Kerr-metric} + d\sigma_n^2$
Cosmological perturbation theory

\[ds^2 = -dt^2 + r(t)^2 d\sigma_n^2 \] : FLRW background metric

\[r(t) : \text{scale factor} \]

\[d\sigma_n^2 = \gamma_{ij}(z) dz^i dz^j \] : homogeneous isotropic time-slice \(n = 3 \)

Perturbations \(\delta g_{\mu\nu}, \delta T_{\mu\nu} \) are decomposed into 3 types according to its tensorial behaviour on time-slice \((\mathcal{K}^n, \gamma_{ij}) \)

- **Tensor-type**: transverse-traceless (possible only when \(n \geq 3 \))
 \[\Rightarrow \text{Gravitational Waves} \]
- **Vector-type**: div-free vector \(\Rightarrow \) couple to matter
 e.g. velocity perturbations
- **Scalar-type**: scalar \(\Rightarrow \) couple to matter
 e.g. density perturbations

Gauge-invariant formulation Bardeen 80 Kodama-Sasaki 84
Brane-world cosmology

- AdS - (Black Hole)-Bulk spacetime

\[ds_{2+n}^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\sigma_n^2 \]

- Brane-world

\[f(r)\dot{t}^2 - \frac{1}{f(r)}\dot{r}^2 = 1 \]

\[ds_{1+n}^2 = -d\tau^2 + r^2(\tau)d\sigma_n^2 \]
Brane-world cosmology

- AdS - (Black Hole)-Bulk spacetime

\[ds^2_{2+n} = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2d\sigma^2_n \]

- Brane-world

\[f(r)\dot{t}^2 - \frac{1}{f(r)}\dot{r}^2 = 1 \]

\[ds^2_{1+n} = -d\tau^2 + r^2(\tau)d\sigma^2_n \]

Bulk perturbations induce brane-world cosmological perturbations
--- need to develop a formula for AdS-Black Hole perturbations
--- convenient to decompose bulk perturbations into Tensor-, Vector-, Scalar-type

\[d\sigma^2_n = \gamma_{ij}(z)dz^idz^j \]

Kodama – Al – Seto ‘00
Black hole background geometry

Static solutions of Einstein-Maxwell + cosmological constant in $D = 2 + n$

$$ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2d\sigma_n^2$$

$$f(r) = K - \frac{2M}{r^{n-1}} + \frac{Q^2}{r^{2(n-1)}} - \lambda r^2$$

$K = \pm 1, 0$

M ADM-mass

Q charge

$\lambda \propto \Lambda$ Cosmological constant
Basic strategy to derive master equations

(1) Mode-decompose $\delta g_{\mu \nu}$ as

- **Tensor-type**: new component in $D > 4$ case
- **Vector-type**: axial - mode in $D = 4$ case
- **Scalar-type**: polar - mode in $D = 4$ case

(2) Expand $\delta g_{\mu \nu}$ by tensor harmonics T_{ij}, V_i, S defined on \mathcal{K}^n

(3) Write the Einstein equations in terms of the expansion coefficients in 2-dim. spacetime \mathcal{N}^2 spanned by $y^a = (t, r)$
Tensor-type perturbations

\[\delta g_{\mu \nu} = \begin{pmatrix} 0 & 0 \\ 0 & r^{(4-n)/2} \Phi(t,r) \ T_{ij} \end{pmatrix} \]

\[y^\alpha = (t,r) \]

\[z^i \]

- \(T_{ij} \): Transverse-Traceless harmonic tensor on \(\mathcal{K}^n \)

\[(\hat{\Delta}_n + k_T^2)T_{ij} = 0 \quad T^i_i = 0, \quad \hat{D}_j T^j_i = 0 \]

- \(\Phi(t,r) \) is a gauge-invariant variable
Tensor-type perturbations

\[\delta g_{\mu\nu} = \begin{pmatrix} 0 & 0 \\ 0 & r^{(4-n)/2} \Phi(t, r) \mathbb{T}_{ij} \end{pmatrix} \begin{cases} y^a = (t, r) \\ z^i \end{cases} \]

- **\(\mathbb{T}_{ij} \):** Transverse-Traceless harmonic tensor on \(\mathcal{K}^n \)

\[(\hat{\triangle}_n + k_T^2) \mathbb{T}_{ij} = 0 \quad \mathbb{T}^i_j = 0, \quad \hat{D}_j \mathbb{T}^j_i = 0 \]

- **\(\Phi(t, r) \)** is a gauge-invariant variable

- Einstein’s equations reduce to Master equation \(\mathcal{N}^2 \)

\[
\left(\Box - \frac{V_T}{f} \right) \Phi = 0
\]

\[V_T \equiv \frac{f}{r^2} \left[\frac{n(n+2)}{4} f + \frac{n(n+1)M}{r^{n-1}} + k_T^2 - (n - 2)K \right] \]
Vector-type perturbations

\[\delta g_{\mu\nu} = \begin{pmatrix} 0 & h_a(t, r) \mathbb{V}_i \\ \ast & H(t, r) D_{(i} \mathbb{V}_{j)} \end{pmatrix} \]

\[y^a = (t, r) \]

\[z^i \]

- \(\mathbb{V}_i \): Div.-free vector harmonics on \(\mathcal{K}^n \):

\[(\Delta_n + k_i^2) \mathbb{V}_i = 0, \quad \hat{D}_i \mathbb{V}^i = 0 \]

- Gauge-invariant variable:

\[F^a := r^{n-2} h^a - \frac{r^n}{2} D^a \left(\frac{H}{r^2} \right) \]

- Einstein’s equations reduce to

\[\{ \begin{array}{c} D_a F^a = 0 \\
\Box F^a + \cdots = 0 \end{array} \]
Vector-type perturbations

\[\delta g_{\mu\nu} = \begin{pmatrix} 0 & h_\alpha(t, r) \nabla_i \\ * & H(t, r) \, D(i \nabla_j) \end{pmatrix} \begin{cases} y^\alpha = (t, r) \\ z^i \end{cases} \]

- \nabla_i: Div.-free vector harmonics on \(K^n \): \((\triangle_n + k_V^2) \nabla_i = 0\), \(\hat{D}_i \nabla^i = 0 \)

- Gauge-invariant variable: \(F^\alpha := r^{n-2} h^\alpha - \frac{r^n}{2} D^\alpha \left(\frac{H}{r^2} \right) \)

- Einstein’s equations reduce to

\[
\begin{align*}
D_\alpha F^\alpha &= 0 \quad \cdots \quad (1) \\
\square F^\alpha + \cdots &= 0 \quad \cdots \quad (2)
\end{align*}
\]

(1) There exists \(\Phi(t, r) \) such that \(F^\alpha = \epsilon^{ab} D_b \left(r^{n/2} \Phi \right) \)

(2) Einstein’s equation reduces to Master equation

\[
\left(\square - \frac{V_V}{f} \right) \Phi = 0 \quad V_V = \frac{f}{r^2} \left[k_V^2 - (n - 1)K + \frac{n(n + 2)}{4} f - \frac{n}{2} r \frac{df}{dr} \right]
\]

-- corresponds to the Regge-Wheeler equation in 4D
Scalar-type perturbations

• Expand $\delta g_{\mu\nu}$ by scalar harmonics \mathbb{S} on \mathcal{K}^n: $(\hat{\Delta}_n + k_S^2)\mathbb{S} = 0$

• Construct gauge-invariant variables: X, Y, Z on \mathcal{N}^2

• After Fourier transf. wrt ‘t’ Einstein’s equations reduce to

 \[\left\{\begin{array}{c}
 \text{Set of 1st–order ODEs for } X, Y, Z \\
 \text{A linear algebraic relation among them}
 \end{array}\right.\]
Scalar-type perturbations

- Expand $\delta g_{\mu \nu}$ by scalar harmonics \mathcal{S} on \mathcal{K}^n: $(\Delta_n + k_S^2)\mathcal{S} = 0$

- Construct gauge-invariant variables: X, Y, Z on \mathcal{N}^2

- After Fourier transf. wrt ‘t’ Einstein’s equations reduce to

 - Set of 1st order ODEs for X, Y, Z
 - A linear algebraic relation among them

 --- such a system can be reduced to a single wave equation

- For a certain linear combination $\Phi(t,r)$ of X, Y, Z

 Einstein’s equations reduce to:

 $$(\Box - \frac{V_S}{f})\Phi = 0$$

 -- corresponds to the Zerilli equation in 4D
Stability analysis

• Master equation takes the form:

\[
\frac{\partial^2}{\partial t^2} \Phi = -A \Phi
\]

\[
A = -\frac{d^2}{dr^2} + V
\]
Stability analysis

• Master equation takes the form:

\[
\frac{\partial^2}{\partial t^2} \Phi = -A \Phi
\]

If "A" is a positive self-adjoint operator, the master equation does not admit "unstable" solutions.

\[
A = -\frac{d^2}{dr_*^2} + V
\]

\[
\Phi \propto \exp(-i\omega t)
\]

\[
\omega^2 \int dr_* |\Phi|^2 = \int dr_* \Phi^* A \Phi
\]

--- The black hole is stable
Stability wrt Tensor-type

\[V_T = \frac{f}{r^2} \left[\frac{n(n+2)}{4} f + \frac{n(n+1)M}{r^{n-1}} + k_T^2 - (n-2)K \right] > 0 \]

\[A = -\frac{d^2}{dr^2} + V > 0 \]

Stable
Stability wrt Scalar-type

The potential is \textbf{NOT} positive definite in $D > 4$

- Not obvious to see whether $A = -\frac{d^2}{dr^2} + V$ is positive or not...
Stability proof

- Define \(D := \frac{d}{dr_*} + S \) with some function \(S(r) \)

\[
(\Phi, A\Phi) = -\Phi^* D\Phi \bigg|_{\text{bndry}} + \int dr_* |D\Phi|^2 + \tilde{V} |\Phi|^2
\]

where \(\tilde{V} := V + \frac{dS}{dr_*} - S^2 \)

Boundary terms vanish under the Dirichlet conditions \(\Phi = 0 \)
Stability proof

• Define $D := \frac{d}{dr_*} + S$ w. some function $S(r)$

$$(\Phi, A\Phi) = -\Phi^* D\Phi|_{\text{bndry}} + \int dr_* |D\Phi|^2 + \tilde{V} |\Phi|^2$$

where $\tilde{V} := V + \frac{dS}{dr_*} - S^2$

Boundary terms vanish under the Dirichlet conditions $\Phi = 0$

Task: Find $S(r)$ that makes \tilde{V} positive definite

Then, A is uniquely extended to be a *positive* self-adjoint operator
When the horizon manifold \mathcal{K}^n is maximally symmetric

<table>
<thead>
<tr>
<th>$K = 1$</th>
<th>$\lambda = 0$</th>
<th>$\lambda > 0$</th>
<th>$\lambda < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>$Q = 0$</td>
<td>$Q \neq 0$</td>
<td>$Q = 0$</td>
<td>$Q \neq 0$</td>
</tr>
<tr>
<td>$D \leq 6$ OK</td>
<td>$D \geq 7$?</td>
<td>$D = 4$ OK</td>
<td>$D = 4$ OK</td>
</tr>
<tr>
<td>$D \geq 6$?</td>
<td>$D \geq 5$?</td>
<td>$D \geq 5$?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$K = 0$</th>
<th>$\lambda < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>$Q = 0$</td>
<td>$Q \neq 0$</td>
</tr>
<tr>
<td>$D = 4$ OK</td>
<td>$D \geq 5$?</td>
</tr>
<tr>
<td>$D \geq 5$?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$K = -1$</th>
<th>$\lambda < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>$Q = 0$</td>
<td>$Q \neq 0$</td>
</tr>
<tr>
<td>$D = 4$ OK</td>
<td>$D \geq 5$?</td>
</tr>
</tbody>
</table>

"OK" \Rightarrow "Stable"

WRT Tensor- and Vector-perturbations \Rightarrow Stable over entire parameter range

WRT Scalar-perturbations \Rightarrow ??? when $Q \neq 0 \land \Lambda \neq 0$
Potential for Scalar-type pert. w. non-vanishing Q, Λ

For extremal and near-extremal case, the potential becomes negative in the immediate vicinity of the horizon.

Numerical study for charged-AdS/dS case Konoplya-Zhidenko 07, 08, 09
Some generalizations and open problems
Static black holes in Lovelock theory

Higher curvature terms involved

\[L = \sum_{m=0}^{k} c_m \mathcal{L}_m \]

\[\mathcal{L}_m = \frac{1}{2m} \delta_{\lambda_1\sigma_1} \cdots \delta_{\lambda_m\sigma_m} R^{\lambda_1\sigma_1 \cdots \rho_{m\kappa_m}} R_{\lambda_m\sigma_m \rho_{m\kappa_m}} \]

Equations of motion contain only up to 2nd-order derivatives

\[ds^2 = -f(r)dt^2 + \frac{1}{f(r)} dr^2 + r^2 d\sigma_n^2 \]

\[f(r) = K - X(r)r^2 \]

• Master equations in generic Lovelock theory \(\text{Takahashi – Soda 10}\)

 in Gauss-Bonnet theory \(\text{Dotti – Gleiser 05}\)

• Asymptotically flat, small mass BHs are \textit{unstable} \(\text{wrt}\)

 Tensor-type perturbations (in even-dim.)

 Scalar-type perturbations (in odd-dim.)

• Instability is \textbf{stronger in higher multipoles} rather than low-multipoles

\[(\Phi, A\Phi) = \int dr_* |D\Phi|^2 + \ell(\ell+n-1) \int dr_* N(r) |\Phi|^2 \]

If \(N(r) < 0\), then \((\Phi, A\Phi) < 0\) for sufficiently large \(\ell\)
Rotating case: Cohomogeneity-2 Myers-Perry BHs

\[m = 4 \quad ds^2 = \langle 4\text{-dim. Kerr type metric} \rangle + r^2 \cos^2 \theta d\sigma_n^2 \]

symmetry enhance \(U(1)^N \Rightarrow U(1) \times SO(D - 3) \)

Numerical approach to stability analysis

5D bar-mode Shibata-Yoshino 10

--- include the ultra-spinning case

Gregory-Laflamme modes
Axisymmetric perturbation Dias-et. al. 09
Cohomogeneity-2 MP case: Analytic formulation?

\[\mathcal{N}^4 \quad \mathcal{K}^n \]

\[m = 4 \quad ds^2 = \langle 4\text{-dim. Kerr type metric} \rangle + r^2 \cos^2 \theta d\sigma_n^2 \]

Tensor-type perturbations: A single master scalar variable \(\phi \) on \(\mathcal{N}^4 \) satisfy the same equation for a massless Klein-Gordon field \(n \geq 3 \)

How about **vector-type** and **scalar-type** perturbations?
Cohomogeneity-2 MP case: Analytic formulation?

\[m = 4 \quad ds^2 = \langle 4\text{-dim. Kerr type metric} \rangle + r^2 \cos^2 \theta d\sigma^2_n \]

Tensor-type perturbations: A single master scalar variable \(\phi \) on \(N^4 \)

satisfy the same equation for a massless Klein-Gordon field

\[n \geq 3 \]

How about vector-type and scalar-type perturbations?

Kerr-brane: 4-dim. Kerr-metric + Ricci flat space

KK-reduction along the Ricci flat space \(K^n \)

⇒ Equations for massive vector/tensor fields

on \(N^4 : 4\text{-dim. Kerr metric} \)

Pani, Gualtieri, Cardoso, Al 15
c.f. Cohomogeneity-1 Myers-Perry BHs

\[D = \text{odd}, \ J_1 = J_2 = \cdots J_{(D-1)/2} \]

enhanced symmetry: \(\mathbb{R} \times U((D - 1)/2) \)

Perturbation equations reduce to ODEs

Kunduri-Lucietti –Reall 07, Murata-Soda 08
Canonical energy method for initial data

Hollands-Wald 13

Symplectic current

\[w^a = \frac{1}{16\pi} P_{abcdef} (\gamma_2^a \nabla_d \gamma_1^e - \gamma_1^a \nabla_d \gamma_2^e) \]

Symplectic form

\[W(\Sigma; \gamma_1, \gamma_2) \equiv \int_{\Sigma} \ast w(g; \gamma_1, \gamma_2) \]

Canonical energy

\[E(\Sigma, \gamma) \equiv W(\Sigma; \gamma, \xi_K \gamma) - B(\mathcal{B}, \gamma) - C(\mathcal{C}, \gamma) \]

\[B(\mathcal{B}, \gamma) = \frac{1}{32\pi} \int_{\mathcal{B}} \gamma^{ab} \delta \sigma_{ab} \]

\[C(\mathcal{C}, \gamma) = -\frac{1}{32\pi} \int_{\mathcal{C}} \tilde{\gamma}^{ab} \delta \tilde{N}_{ab} \]
Canonical energy method for initial data

Symplectic current

\[w^a = \frac{1}{16\pi} P^{abcdef} (\gamma_{2bc} \nabla_d \gamma_{1ef} - \gamma_{1bc} \nabla_d \gamma_{2ef}) \]

Symplectic form

\[W(\Sigma; \gamma_1, \gamma_2) \equiv \int_\Sigma \star w(g; \gamma_1, \gamma_2) \]

Canonical energy

\[\mathcal{E}(\Sigma, \gamma) \equiv W(\Sigma; \gamma, \mathbf{f}_K \gamma) - B(\mathcal{B}, \gamma) - C(\mathcal{C}, \gamma) \]

1) \(\mathcal{E} \) is gauge invariant

2) \(\mathcal{E} \) is monotonically decreasing for any axi-symmetric perturbation

\[B(\mathcal{B}, \gamma) = \frac{1}{32\pi} \int_{\mathcal{B}} \gamma^{ab} \delta \sigma_{ab} \]

\[C(\mathcal{C}, \gamma) = -\frac{1}{32\pi} \int_{\mathcal{C}} \tilde{\gamma}^{ab} \delta \tilde{N}_{ab} \]
Canonical energy method for initial data

Symplectic current

\[w^a = \frac{1}{16\pi} P^{abcdef} (\gamma_{2bc} \nabla_d \gamma_{1ef} - \gamma_{1bc} \nabla_d \gamma_{2ef}) \]

Symplectic form

\[W(\Sigma; \gamma_1, \gamma_2) \equiv \int_\Sigma \star w(g; \gamma_1, \gamma_2) \]

Canonical energy

\[\mathcal{E}(\Sigma, \gamma) \equiv W(\Sigma; \gamma, \mathbf{\xi}_K \gamma) - B(\mathcal{B}, \gamma) - C(\mathcal{C}, \gamma) \]

1) \(\mathcal{E} \) is gauge invariant

2) \(\mathcal{E} \) is monotonically decreasing for any axi-symmetric perturbation

\[B(\mathcal{B}, \gamma) = \frac{1}{32\pi} \int_\mathcal{B} \gamma^{ab} \delta \sigma_{ab} \]

\[C(\mathcal{C}, \gamma) = -\frac{1}{32\pi} \int_\mathcal{C} \bar{\gamma}^{ab} \delta \bar{N}_{ab} \]

This method relates Dynamic and Thermodynamic stability criterion and proves Gubser-Mitra conjecture.
Role of symmetry in Stability problem

• Stability of extremal black holes

Examine perturbations of the near-horizon geometry that respect the symmetry (axisymmetry) of the full BH solution

Conjectured by Durkee - Reall 11

When axi-symmetric perturbations on the NHG violate AdS$_2$ -BF-bound on the NHG, then the original extremal BH is unstable

\[e^{im_I \phi^I} \quad m_I N^I(x) = 0 \]

... supported by numerical results. Dias et al

Proven by use of Canonical energy method Hollands-Al 14
Role of symmetry in Stability problem

- Stability of extremal black holes

Examine perturbations of the near-horizon geometry that respect the symmetry (axisymmetry) of the full BH solution

Conjectured by Durkee - Reall 11

When axi-symmetric perturbations on the NHG violate AdS$_2$ -BF-bound on the NHG, then the original extremal BH is unstable

\[e^{im_l \phi^I} m_l N^I(x) = 0 \]

... supported by numerical results. Dias et al

Proven by use of Canonical energy method Hollands-Al 14

Another application of Canonical energy method

→ Superradiant instability of rotating AdS black holes

Green-Hollands-Al-Wald 15 VIII BH workshop
Summary

• Static HDBHs: Complete formulation for perturbations
Summary

- Static HDBHs: Complete formulation for perturbations

- Rotating HDBHs:
 -- Still a long way from having a complete formulation
 -- Considerable progress recently made for some special cases
Summary

• Static HDBHs: Complete formulation for perturbations

• Rotating HDBHs:
 -- Still a long way from having a complete formulation
 -- Considerable progress recently made for some special cases

• Interplay between
 Exact solutions + Perturbation analysis
 Numerical Analysis
 Mathematical Theorems
Interplay between Exact solutions + Perturbation
Numerical Analysis
Mathematical Theorems

1915 Einstein equations
1915 Schwarzschild Solution
1939 Oppenheimer-Snyder
1957 Regge-Wheeler equation
1963 Kerr solution
1965 Singularity Theorems
1970 Zerilli equation
1973 Teukolsky equation
1975 BH Thermodynamiccs laws
1982 Uniqueness Theorem
1983 Positive Energy Theorem
1985 Accurate method to BH QNMs

Exact Solutions + Perturbation analysis

Mathematica Theorems

Numerical Approach
Exact solutions + Perturbation

1986 Myers-Perry Solution

1993 BTZ Solution
Gregory-Laflamme Instability
Choptuick’s critical collapse in Numerical GR
BSSN system in Numerical GR

1997 AdS-CFT correspondence

1998 Brane-world scenario

2001 Emparan-Reall black ring
HD BH Perturbation theory: This talk
Doubly spinning black ring
Black saturn
Multiple- black rings

2015 Black-lens Kunduri-Lucietti
Numerical Analysis

1986
Myers-Perry Solution

1993
BTZ Solution

 Gregory-Laflamme Instability

 Choptuick’s critical collapse in Numerical GR

 BSSN system in Numerical GR

1997
AdS-CFT correspondence

1998
Brane-world scenario

2001
Emparan-Reall black ring

 High energy collisions of BHs Sperhake et al

 Axisymmetric perturbation of MP BH – Dias et. al

 Bar-mode instability of MP BH Shibata-Yoshino

 Black-String final fate Lehner-Pretorius

2015
Instability of AdS spacetimes – Bizon-Rostworowsky
Mathematical Theorems

1986 Myers-Perry Solution

1993 BTZ Solution
 Gregory-Laflamme Instability
 Choptuick’s critical collapse in Numerical GR
 BSSN system in Numerical GR

1997 AdS-CFT correspondence

1998 Brane-world scenario

2001 Emparan-Reall black ring
 HD generalization of BH Topology Theorem
 HD generalization of BH rigidity (Symmetry) Theorem
 HD Uniqueness/Non-uniqueness Theorems

2015

Interplay between Exact solutions + Perturbation
Numerical Analysis
Mathematical Theorems

1986
Myers-Perry Solution

1993
BTZ Solution
Gregory-Laflamme Instability
Choptuick’s critical collapse in Numerical GR
BSSN system in Numerical GR

1997
AdS-CFT correspondence

1998
Brane-world scenario

2001
Emparan-Reall black ring

Higher dimensional General Relativity

2015
At GR Centenary

- **Perturbation theory** has played a major role in understanding basic properties—e.g. stability—of *exact solutions* at hand.

- **Numerical Approach** has become more important to reveal interesting properties of complicated systems and/or to deal with more realistic models.

- **Mathematical theorems** as guide lines.

- Interplay between
 - **Numerical Approach**
 - **Mathematical Theorems** and
 - **Exact solution + Perturbation analysis**
will be getting more and more important.