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1. Introduction

··· Entropy is related to degrees of freedom. Matter entropy is related to the
volume, e.g., Sakur-Tetrode entropy (1912), the entropy of a monatomic
classical ideal gas which incorporates quantum considerations

S = N
(

ln
[

V
N

(
m

3π h̄2
U
N

)3/2
]
+ 5

2

)
.

··· Black hole entropy is in the area, the Bekenstein-Hawking entropy S = 1
4

A+

Ap
,

Ap = h̄, the Planck area (G = 1, c = 1, kB = 1). Points to the ultimate
degrees of freedom are in the area not volume. Works of 1970s.
··· This is well established for nonextremal black holes: thermodynamics of

black holes, Euclidean formulation and path integral approach to statistical
mechanics.
··· Not so for extremal black holes. The Euclidean formulation shows that

S = 0 due to trivial topology (Hawking, Horowitz, Ross 1995, Teitelboim
1995). On the other hand string theory formulation of black holes shows
S = 1

4
A+

Ap
(Strominger, Vafa 1996). There is a problem here.

···We use matter to study black hole entropy. Use the simplest form of matter:
a shell. Amazingly, it reflects and gives a solution to the debate.



2. Dynamics of shells: the simpest spacetime after
vacuum

Gαβ = 8πTαβ , ∇β Fαβ = 4πJα (G = 1 , c = 1).

In the inner region Vi (r ≤ R) we assume the spacetime is flat, i.e.

ds2
i = gi

αβ
dxαdxβ =−dt2

i +dr2 + r2 dΩ
2 .

In the outer region Vo (r ≥ R), the spacetime is Reissner-Nordström

ds2
o = go

αβ
dxαdxβ =−

(
1− 2m

r
+

Q2

r2

)
dt2

o +
dr2

1− 2m
r

+
Q2

r2

+ r2dΩ
2 .

On the hypersurface itself, r = R, the metric hab is that of a 2-sphere plus time,

ds2
Σ = habdyadyb =−dτ

2 +R2(τ)dΩ
2 .

The metric hab is the induced metric,

hi
ab = gi

αβ
eα

i a eβ

i b , ho
ab = go

αβ
eα

o a eβ
o b ,

where eα
i a and eα

o a are tangent vectors to the hypersurface viewed from the
inner and outer regions, respectively.



2. Dynamics of shells: the simpest spacetime after
vacuum

[hab] = 0 ,

where [ ] means the jump in the quantity across the hypersurface.

Sa
b =−

1
8π

([Ka
b]− [K]ha

b) ,

Ka
i b = ∇β ni

α eα
i c eβ

i b hca
i , Ka

o b = ∇β no
α eα

o c eβ
o b hca

o ,

where ∇β is the symbol for covariant derivative and ni
α no

α , are the inner and
outer normals to the shell,
Find

σ =
1−
√

1− 2m
R + Q2

R2

4πR
,

p =
1− m

R −
√

1− 2m
R + Q2

R2

8πR
.

Can envisage as an equation of state p = p(σ ,R,Q).



2. Dynamics of shells: the simpest spacetime after
vacuum

The shell’s redshift function k is

k =

√
1− 2m

R
+

Q2

R2 .

Then

σ =
1− k
4πR

, p =
R2(1− k)2−Q2

16πR3k
.

Define rest mass M as

σ =
M

4πR2 , so M = R(1− k) .

One is led to an equation for the ADM mass m,

m = M−M2

2R
+

Q2

2R
.

This equation is intuitive in physical grounds as it states that the total energy
m of the shell is given by its mass M minus the energy required to built it
against the action of gravitational and electrostatic forces, i.e., −M2

2R + Q2

2R .



2. Dynamics of shells: the simpest spacetime after
vacuum

The gravitational radius r+ and the Cauchy horizon r− of the shell spacetime
are

r+ = m+
√

m2−Q2 , r− = m−
√

m2−Q2 .

The gravitational radius r+ is also the horizon radius when the shell radius R
is inside r+, i.e., the spacetime contains a black hole. Inverting

m = (r++ r−) , Q =
√

r+r− .

Then k can be written as

k =
√(

1− r+
R

)(
1− r−

R

)
.

The gravitational area A+ and the area A of the shell are

A+ = 4π r2
+ , A = 4πR2

Shell should obey
R≥ r+.



2. Dynamics of shells: the simpest spacetime after
vacuum

The Faraday-Maxwell tensor Fαβ is defined in terms of an electromagnetic
four-potential Aα by

Fαβ = ∂αAβ −∂β Aα .

To use the thin shell formalism related to the electric part we need to specify
the vector potential Aα in each side of the shell. Assume an electric ansatz

Aα = (−φ ,0,0,0) .

In the inner and outer regions get

φi =
Q
R
+ constant , r ≤ R , φo =

Q
r
+ constant , r ≥ R .

where Q is a constant, to be interpreted as the conserved electric charge. Now
Aa = Aα eα

a
is the projected 4-potential intrinsic to the shell. Then

[Aa] = 0 ,
gives at R

φo = φi , r = R .



2. Dynamics of shells: the simpest spacetime after
vacuum

The tangential components Fab of the electromagnetic tensor Fαβ must
change smoothly across Σ,

[Fab] = 0 ,
with

Fi
ab = Fi

αβ
eα

i a eβ

i b , Fo
ab = Fo

αβ
eα

o a eβ
o b ,

while the normal components Fa⊥ must change by a jump as,

[Fa⊥] = 4πσeua ,

where Fi
a⊥ = Fi

αβ
eα

i a nβ

i , Fo
a⊥ = Fo

αβ
eα

o a nβ
o ,

and σeua is the surface electric current, with σe being the density of charge
and ua its 3-velocity, defined on the shell. Then on the shell,

∂φo

∂ r
− ∂φi

∂ r
=−4πσe , r = R .

Finally Q
R2 = 4πσe .



3. Thermodynamics of shells: generics

Now the shell is hot. The fluid is still perfect. Should then turn to the
thermodynamic side and to the calculation of the entropy of the shell. The
shell possesses a well defined temperature T and an entropy S which is a
function of M, A, Q, i.e.,

S = S(M,A,Q) .

The first law of thermodynamics is then

TdS = dM+pdA−ΦdQ .

To find S, one needs three equations of state

p = p(M,A,Q) ,

β = β (M,A,Q) ,

Φ = Φ(M,A,Q) ,

where
β ≡ 1

T
.

T and Φ play a role of integration factors, i.e., there will be integrability
conditions.



3. Thermodynamics of shells: generics

The integrability conditions must be specified in order to guarantee the
existence of an expression for the entropy, so dS is exact. They are(

∂β

∂A

)
M,Q

=

(
∂βp
∂M

)
A,Q

,(
∂β

∂Q

)
M,A

=−
(

∂βΦ

∂M

)
A,Q

,(
∂βp
∂Q

)
M,A

=−
(

∂βΦ

∂A

)
M,Q

.

These determine the relations between the three equations of state of the
system, here the shell.
From the first law of thermodynamics one can perform a thermodynamic
study of the local intrinsic stability of the shell,(

∂ 2S
∂M2

)
A,Q
≤ 0 ,

(
∂ 2S
∂M2

)(
∂ 2S
∂Q2

)
−
(

∂ 2S
∂M∂Q

)2

≥ 0 ,

plus four other equations.



4. Thermodynamics of shells: independent variables and
equations of state for the shell’s p, T , and Φ

From now onwards we work with the three independent variables

(M,R,Q) .

R is simpler then A, (R =
√

A
4π

).
We should now envisage all quantitites as functions of (M,R,Q),

m(M,R,Q) = M−M2

2R
+

Q2

2R
,

r+(M,R,Q) = m(M,R,Q)+
√

m(M,R,Q)2−Q2 ,

r−(M,R,Q) = m(M,R,Q)−
√

m(M,R,Q)2−Q2 ,

k(r+(M,R,Q),r−(M,R,Q),R) =√(
1− r+(M,R,Q)

R

)(
1− r−(M,R,Q)

R

)
.



4. Thermodynamics of shells: independent variables and
equations of state for the shell’s p, T , and Φ

The pressure equation of state:

Expressing the pressure equation of state as a function of (M,R,Q)

p(M,R,Q) =
M2−Q2

16πR2(R−M)
.

Changing from the variables (M,R,Q) to (r+,r−,R) which is more useful find

p(r+,r−,R) =
R2(1− k)2− r+r−

16πR3 k
,

where k can be envisaged as k = k(r+,r−,R) and r+ and r− are functions of
(M,R,Q).

This equation is a pure consequence of the Einstein equation, encoded in the
junction conditions.



4. Thermodynamics of shells: independent variables and
equations of state for the shell’s p, T , and Φ

The temperature equation of state:
Now we have the integrability condition

(
∂β

∂A

)
M,Q

=
(

∂βp
∂M

)
A,Q

. Changing

from the variables (M,R,Q) to (r+,r−,R) it becomes(
∂β

∂R

)
r+,r−

= β
R(r++ r−)−2r+r−

2R3k2 ,

which has the solution

β (r+,r−,R) = b(r+,r−)k ,

where k is the redshift function, function of r+, r−, and R.
Also b(r+,r−)≡ β (∞,r+,r−) is an arbitrary function, representing the inverse
of the temperature of the shell if its radius were infinite.
Hence, our formalism recovers Tolman’s formula for the temperature of a
body in curved spacetime. The arbitrariness of this function is due to the fact
that the matter fields of the shell have to be specified. Note that b and k are
still functions of (M,R,Q).



4. Thermodynamics of shells: independent variables and
equations of state for the shell’s p, T , and Φ

The electric potential equation of state:
The integrability conditions give

R2
(

∂Φk
∂R

)
r+,r−

−√r+r− = 0 ,

where again k can be envisaged as k = k(r+,r−,R). The solution is

Φ(r+,r−,R) =
φ(r+,r−)−

√
r+r−
R

k
,

where φ(r+,r−)≡Φ(∞,r+,r−) is an arbitrary function that corresponds to
the electric potential of the shell if it were at infinity. Φ is the difference in the
electric potential φ between infinity and R, blueshifted from infinity to R.
It is convenient to define c(r+,r−)≡ φ(r+,r−)

Q or c(r+,r−)≡ φ(r+,r−)√
r+r−

. So

Φ(r+,r−,R) =
c(r+,r−)−

1
R

k
√

r+r− .



5. Thermodynamics of shells: entropy of thin shells

Have all necessary information to calculate the entropy S of the shell.
Inserting the equations of state for pressure, temperature, and electric
potential, into the first law TdS = dM+pdA+ΦdQ find

dS = b(r+,r−)
1− c(r+,r−)r−

2
dr++b(r+,r−)

1− c(r+,r−)r+
2

dr− .

It has its own integrability condition if dS is to be an exact differential,

∂b
∂ r−

(1− r−c)− ∂b
∂ r+

(1− r+c) =
∂c

∂ r−
br−−

∂c
∂ r+

br+.

So S = S(r+,r−) ,

the entropy is a function of r+ and r−. In fact S is a function of (M,R,Q), but
dependence has to be through r+(M,R,Q) and r−(M,R,Q),

S(M,R,Q) = S(r+(M,R,Q),r−(M,R,Q)) .

To obtain a specific expression for S one can choose either b or c, the other
function comes from integrability. Since it is a differential equation there is
some freedom.



6. Thermodynamics of shells: examples
1. b(r+,r−) = 2a(r++ r−)α ,

c(r+,r−) = 2d (r+r−)δ

(r++r−)α .
Then,
S(r+,r−) = a

[
(r++r−)α+1

α+1 −d (r+r−)δ+1

δ+1

]
.

2. b(r+,r−) =
h(r+)

r+−r−
,

c(r+,r−) = 1
r+

.
Then,
S(r+) = 1

2
∫ r+

0
h(x)

x dx.

3. b(r+,r−) =
h(r−)

r+−r−
,

c(r+,r−) = 1
r−

.
Then,
S(r−) = 1

2
∫ r−

0
h(x)

x dx.
4. b(r+,r−) = b0,

c(r+,r−) = c(r+r−).
Then,
S(r+,r−) = b0

2

(
r++ r−−

∫ r+r−
0 c(x)dx

)
.



7. Thermodynamics of shells: the black hole limit

Now, the black hole limit is R→ r+. The shell hovering at its own
gravitational radius.
The shell adjusts to the environmental spacetime: quantum fields and
back-reaction diverge unless choose the black hole Hawking Tbh for the shell,

b(r+,r−) =
1

Tbh
=

4π

Ap

r2
+

r+− r−
.

Choose also
c(r+,r−) =

1
r+

.

Get
S =

1
4

A+

Ap
,

the Bekenstein-Hawking entropy. The pressure and the thermodynamic
electric potential go to infinity as 1/k. The local inverse temperature goes to
zero as k, and the local temperature of the shell goes to infinity as 1/k. These
well controlled infinities cancel out in the first law to give the entropy.
As A = A+ all the shell’s fundamental degrees of freedom have been excited.



7. Thermodynamics of shells: the black hole limit

There are similarities between the thin shell approach and the black hole
mechanics approach. These are evident if we express the differential of the
entropy of the charged shell in terms of the black hole ADM mass m and
charge Q, given in terms of the variables (r+,r−). The differential for the
entropy of the shell reads in these variables

T0dS = dm− cQdQ ,

where we have defined T0 ≡ 1/b(r+,r−) which is the temperature the shell
would possess if located at infinity. Here, T0 = 1/b(r+,r−) and c = c(r+,r−)
should be seen as T0(m,Q) = 1/b(m,Q) and c(m,Q), respectively, since r+
and r− are functions of m and Q. As we have seen, if we take the shell to its
gravitational radius, we must fix T0 = Tbh and c = 1/r+. This suggests that
Q/r+ should play the role of the black hole electric potential Φbh, which in
fact is true. So the conservation of energy of the shell is expressed as

TbhdSbh = dm−Φbh dQ .

We thus see that the first law of thermodynamics for the shell at its own
gravitational radius is equal to the energy conservation for the black hole.



8. Thermodynamics of extremal shells: the extremal
black hole limit

Here,
ds2

o =−
(

1− m
r

)2
dt2

o +
dr2(

1− m
r

)2 + r2dΩ
2 , r ≥ R ,

r+ = r− = m = Q = M . σ =
M

4πR2 , p = 0 .

The first law of thermodynamics
TdS = dM+pdA−ΦdQ ,

gives now dS = β (1−Φ)dr+ .

Integrability gives β (1−Φ) = s(r+) .

Thus S = S(r+) for R≥ r+. In particular in the black hole limit

S = S(r+) , R = r+ ,

Can argue
0≤ S(r+)≤

1
4

A+

Ap
,

or 0≤ S(r+)≤ πr2
+.
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