Fake hair for black holes

E Babichev and CC gr-qc/1312.3204 CC, T Kolyvaris, E Papantonopoulos and M Tsoukalas gr-qc/1404.1024 E Babichev CC and M Hassaine in preparation

LPT Orsay, CNRS

CENTRA-Lisbon

Scalar-tensor theories' and no hair Scalar-tensor black holes and the no hair paradigm Building higher order scalar-tensor black holes Hairy black hole Adding matter Conclusions

Gravity modification:issues and guidelines

1 Introduction/Motivation

- Gravity modification: issues and guidelines
- 2 Scalar-tensor theories and no hair
- Scalar-tensor black holes and the no hair paradigm
 Conformal secondary hair?
- 4 Building higher order scalar-tensor black holes
 - Resolution step by step
 - Example solutions
- 5 Hairy black hole
- 6 Adding matter

Scalar-tensor theories and no hair Scalar-tensor black holes and the no hair paradigm Building higher order scalar-tensor black holes Hairy black hole Adding matter Conclusions

Gravity modification:issues and guidelines

- GR is a unique mathematically consistent theory (Lovelock theorem).
- GR has remarkable agreement with weak and strong gravity experiments at local scales
- GR at cosmological scales requires a fine tuned tiny cosmological constant
- Enormous difference in local and cosmological scales. Could it be that gravity is modified at the IR?

Scalar-tensor theories and no hair Scalar-tensor black holes and the no hair paradigm Building higher order scalar-tensor black holes Hairy black hole Adding matter Conclusions

Gravity modification:issues and guidelines

- GR is a unique mathematically consistent theory (Lovelock theorem).
- GR has remarkable agreement with weak and strong gravity experiments at local scales
- GR at cosmological scales requires a fine tuned tiny cosmological constant
- Enormous difference in local and cosmological scales. Could it be that gravity is modified at the IR?

Scalar-tensor theories and no hair Scalar-tensor black holes and the no hair paradigm Building higher order scalar-tensor black holes Hairy black hole Adding matter Conclusions

Gravity modification:issues and guidelines

- GR is a unique mathematically consistent theory (Lovelock theorem).
- GR has remarkable agreement with weak and strong gravity experiments at local scales
- GR at cosmological scales requires a fine tuned tiny cosmological constant
- Enormous difference in local and cosmological scales. Could it be that gravity is modified at the IR?

Gravity modification:issues and guidelines

- GR is a unique mathematically consistent theory (Lovelock theorem).
- GR has remarkable agreement with weak and strong gravity experiments at local scales
- GR at cosmological scales requires a fine tuned tiny cosmological constant
- Enormous difference in local and cosmological scales. Could it be that gravity is modified at the IR?

Scalar-tensor theories'and no hair Scalar-tensor black holes and the no hair paradigm Building higher order scalar-tensor black holes Hairy black hole Adding matter Conclusions

Gravity modification:issues and guidelines

Maybe Aobs is not a cosmological constant.

What if the need for exotic matter or cosmological constant is the sign for novel gravitational physics at very low energy scales or large distances.

-Same situation at the advent of GR.

-A next order correction with one additional parameter was enough to save Newton's laws (at the experimental precision of the time..) -Success of GR is not the advance of Mercury's perihelion, modification of gravity cannot only be "an explanation" of the cosmological constant.

Scalar-tensor theories and no hair Scalar-tensor black holes and the no hair paradigm Building higher order scalar-tensor black holes Hairy black hole Adding matter Conclusions

Gravity modification:issues and guidelines

Maybe Aobs is not a cosmological constant.

What if the need for exotic matter or cosmological constant is the sign for novel gravitational physics at very low energy scales or large distances.

-Same situation at the advent of GR.

-A next order correction with one additional parameter was enough to save Newton's laws (at the experimental precision of the time..)

-Success of GR is not the advance of Mercury's perihelion, modification of gravity cannot only be "an explanation" of the cosmological constant.

Scalar-tensor theories and no hair Scalar-tensor black holes and the no hair paradigm Building higher order scalar-tensor black holes Hairy black hole Adding matter Conclusions

Gravity modification:issues and guidelines

Maybe Λ_{obs} is **not** a cosmological constant.

What if the need for exotic matter or cosmological constant is the sign for novel gravitational physics at very low energy scales or large distances.

-Same situation at the advent of GR.

-A next order correction with one additional parameter was enough to save Newton's laws (at the experimental precision of the time..)

-Success of GR is not the advance of Mercury's perihelion, modification of gravity cannot only be "an explanation" of the cosmological constant.

Gravity modification:issues and guidelines

• Since GR is unique we need to introduce new and genuine gravitational degrees of freedom!

- They must not lead to higher derivative equations of motion. For then additional degrees of freedom are ghosts and vacuum is unstable (Ostrogradski theorem 1850 [Woodard 2006, Rubakov 2014])
- Matter must not directly couple to novel gravity degrees of freedom. Matter sees only the metric and evolves in metric geodesics. As such EEP is preserved and space-time can be put locally in an inertial frame.
- Novel degrees of freedom need to be screened from local gravity experiments. Need a well defined GR local limit (Chameleon [Khoury 2013], Vainshtein [Babichev and Deffayet 2013]).
- Exact solutions essential in modified gravity in order to understand strong gravity regimes and novel characteristics. Need to deal with no hair paradigm.
- A modified gravity theory should tell us something about the cosmological constant problem and in particular how to screen an a pric enormous cosmological constant.

Gravity modification:issues and guidelines

- Since GR is unique we need to introduce new and genuine gravitational degrees of freedom!
- They must not lead to higher derivative equations of motion. For then additional degrees of freedom are ghosts and vacuum is unstable (Ostrogradski theorem 1850 [Woodard 2006, Rubakov 2014])
- Matter must not directly couple to novel gravity degrees of freedom. Matter sees only the metric and evolves in metric geodesics. As such EEP is preserved and space-time can be put locally in an inertial frame.
- Novel degrees of freedom need to be screened from local gravity experiments. Need a well defined GR local limit (Chameleon [Khoury 2013], Vainshtein [Babichev and Deffayet 2013]).
- Exact solutions essential in modified gravity in order to understand strong gravity regimes and novel characteristics. Need to deal with no hair paradigm.
- A modified gravity theory should tell us something about the cosmological constant problem and in particular how to screen an a prio enormous cosmological constant.

- Since GR is unique we need to introduce new and genuine gravitational degrees of freedom!
- They must not lead to higher derivative equations of motion. For then additional degrees of freedom are ghosts and vacuum is unstable (Ostrogradski theorem 1850 [Woodard 2006, Rubakov 2014])
- Matter must not directly couple to novel gravity degrees of freedom. Matter sees only the metric and evolves in metric geodesics. As such EEP is preserved and space-time can be put locally in an inertial frame.
- Novel degrees of freedom need to be screened from local gravity experiments. Need a well defined GR local limit (Chameleon [Khoury 2013], Vainshtein [Babichev and Deffayet 2013]).
- Exact solutions essential in modified gravity in order to understand strong gravity regimes and novel characteristics. Need to deal with no hair paradigm.
- A modified gravity theory should tell us something about the cosmological constant problem and in particular how to screen an a priori enormous cosmological constant.

- Since GR is unique we need to introduce new and genuine gravitational degrees of freedom!
- They must not lead to higher derivative equations of motion. For then additional degrees of freedom are ghosts and vacuum is unstable (Ostrogradski theorem 1850 [Woodard 2006, Rubakov 2014])
- Matter must not directly couple to novel gravity degrees of freedom. Matter sees only the metric and evolves in metric geodesics. As such EEP is preserved and space-time can be put locally in an inertial frame.
- Novel degrees of freedom need to be screened from local gravity experiments. Need a well defined GR local limit (Chameleon [Khoury 2013], Vainshtein [Babichev and Deffayet 2013]).
- Exact solutions essential in modified gravity in order to understand strong gravity regimes and novel characteristics. Need to deal with no hair paradigm.
- A modified gravity theory should tell us something about the cosmological constant problem and in particular how to screen an a priori enormous cosmological constant.

Gravity modification:issues and guidelines

- Since GR is unique we need to introduce new and genuine gravitational degrees of freedom!
- They must not lead to higher derivative equations of motion. For then additional degrees of freedom are ghosts and vacuum is unstable (Ostrogradski theorem 1850 [Woodard 2006, Rubakov 2014])
- Matter must not directly couple to novel gravity degrees of freedom. Matter sees only the metric and evolves in metric geodesics. As such EEP is preserved and space-time can be put locally in an inertial frame.
- Novel degrees of freedom need to be screened from local gravity experiments. Need a well defined GR local limit (Chameleon [Khoury 2013], Vainshtein [Babichev and Deffayet 2013]).
- Exact solutions essential in modified gravity in order to understand strong gravity regimes and novel characteristics. Need to deal with no hair paradigm.
- A modified gravity theory should tell us something about the cosmological constant problem and in particular how to screen an a priori enormous cosmological constant.

Gravity modification:issues and guidelines

- Since GR is unique we need to introduce new and genuine gravitational degrees of freedom!
- They must not lead to higher derivative equations of motion. For then additional degrees of freedom are ghosts and vacuum is unstable (Ostrogradski theorem 1850 [Woodard 2006, Rubakov 2014])
- Matter must not directly couple to novel gravity degrees of freedom. Matter sees only the metric and evolves in metric geodesics. As such EEP is preserved and space-time can be put locally in an inertial frame.
- Novel degrees of freedom need to be screened from local gravity experiments. Need a well defined GR local limit (Chameleon [Khoury 2013], Vainshtein [Babichev and Deffayet 2013]).
- Exact solutions essential in modified gravity in order to understand strong gravity regimes and novel characteristics. Need to deal with no hair paradigm.
- A modified gravity theory should tell us something about the cosmological constant problem and in particular how to screen an a priori enormous cosmological constant.

Scalar-tensor theories' and no hair Scalar-tensor black holes and the no hair paradigm Building higher order scalar-tensor black holes Hairy black hole Adding matter Conclusions

Gravity modification:issues and guidelines

Possible modified gravity theories

- Assume extra dimensions : Extension of GR to Lovelock theory with modified yet second order field equations [Deruelle et.al '03, Garraffo et.al. '08, cc '09]. Braneworlds DGP model RS models, Kaluza-Klein compactification
- Graviton is not massless but massive! dRGT theory and bigravity theory. Theories are unique. [C DeRham, 2014]
- 4-dimensional modification of GR: Scalar-tensor theories, f(R), Galileon/Hornedski theories [Sotiriou 2014, cc 2014].
- Lorentz breaking theories: Horava gravity, Einstein Aether theories [Audren, Blas, Lesgourgues and Sibiryakov]
- Theories modifying geometry: inclusion of torsion, choice of geometric connection [Zanelli '08, Olmo 2012]

- 1 Introduction/Motivation
 - Gravity modification: issues and guidelines
- 2 Scalar-tensor theories and no hair
- Scalar-tensor black holes and the no hair paradigm
 Conformal secondary hair?
- 4 Building higher order scalar-tensor black holes
 - Resolution step by step
 - Example solutions
- 5 Hairy black hole
- 6 Adding matter

Scalar-tensor theories

- are the simplest modification of gravity with one additional degree of freedom
- Admit a uniqueness theorem due to Horndeski 1973
- contain or are limits of other modified gravity theories. *F*(*R*) is a scalar tensor theory in disguise
- (Can) have insightful screening mechanisms (Chameleon, Vainshtein)
- Include terms that can screen classically a big cosmological constant (Fab 4 [CC, Copeland, Padilla and Saffin 2012])

What is the most general scalar-tensor theory

with second order field equations [Horndeski 1973], [Deffayet et.al.]?

Horndeski has shown that the most general action with this property is

$$S_H = \int d^4 x \sqrt{-g} \left(L_2 + L_3 + L_4 + L_5 \right)$$

$$\begin{split} L_2 &= \mathcal{K}(\phi, X), \\ L_3 &= -G_3(\phi, X) \Box \phi, \\ L_4 &= G_4(\phi, X) \mathcal{R} + G_{4X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right], \\ L_5 &= G_5(\phi, X) G_{\mu\nu} \nabla^\mu \nabla^\nu \phi - \frac{G_{5X}}{6} \left[(\Box \phi)^3 - 3 \Box \phi (\nabla_\mu \nabla_\nu \phi)^2 + 2 (\nabla_\mu \nabla_\nu \phi)^3 \right] \\ \text{the } G_i \text{ are unspecified functions of } \phi \text{ and } X \equiv -\frac{1}{2} \nabla^\mu \phi \nabla_\mu \phi \text{ and} \end{split}$$

 $G_{iX} \equiv \partial G_i / \partial X.$

• In fact same action as covariant Galileons [Deffayet, Esposito-Farese, Vikman]

 $\bullet\,$ Theory screens generically scalar mode locally by the Vainshtein

Conformal secondary hair?

Introduction/Motivation

- Gravity modification: issues and guidelines
- 2 Scalar-tensor theories and no hair
- Scalar-tensor black holes and the no hair paradigm
 Conformal secondary hair?
- 4 Building higher order scalar-tensor black holes
 - Resolution step by step
 - Example solutions
- 5 Hairy black hole
- 6 Adding matter

Conformal secondary hair?

Black holes have no hair

During gravitational collapse...

Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges and no details black holes are hold.

No hair arguments/theorems dictate that adding degrees of freedom lead to singular solutions... For example in vanilla scalar-tensor theories black hole solution

are GR black holes with constant scalar.

Conformal secondary hair?

Black holes have no hair

During gravitational collapse... Black holes eat or expel surrounding matter

their stationary phase is characterized by a limited number of charges and no details

No hair arguments/theorems dictate that adding degrees of

lead to singular solutions.

For example in vanilla scalar-tensor theories black hole solutions are GR black holes with constant scalar.

Conformal secondary hair?

Black holes have no hair

During gravitational collapse... Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges

and no details black holes are bald...

No hair arguments/theorems dictate that adding degrees of freedom lead to singular solutions... For example in vanilla scalar-tensor theories black hole soluti

are GR black holes with constant scalar.

Conformal secondary hair?

Black holes have no hair

During gravitational collapse... Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges and no details

black holes are bald...

No hair arguments/theorems dictate that adding degrees of freedom lead to singular solutions...

For example in vanilla scalar-tensor theories black hole solutions are GR black holes with constant scalar.

Conformal secondary hair?

Black holes have no hair

During gravitational collapse... Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges and no details black holes are bald...

No hair arguments/theorems dictate that adding degrees of freedom lead to singular solutions... For example in vanilla scalar-tensor theories black hole solutio

are GR black holes with constant scalar.

Conformal secondary hair?

Black holes have no hair

During gravitational collapse... Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges and no details black holes are bald...

No hair arguments/theorems dictate that adding degrees of freedom lead to singular solutions...

For example in vanilla scalar-tensor theories black hole solutions are GR black holes with constant scalar.

Conformal secondary hair?

Black holes have no hair

During gravitational collapse... Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges and no details black holes are bald...

No hair arguments/theorems dictate that adding degrees of freedom lead to singular solutions...

For example in vanilla scalar-tensor theories black hole solutions are GR black holes with constant scalar.

Conformal secondary hair?

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) \mathrm{d}^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\left(egin{array}{ll} g_{lphaeta}\mapsto ilde{g}_{lphaeta}=\Omega^2 g_{lphaeta}\ \phi\mapsto ilde{\phi}=\Omega^{-1}\phi \end{array}
ight.$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.
 The BBMB solution [N. Bocharova et al.-70, J. Bekenstein-74]

Conformal secondary hair?

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) \mathrm{d}^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\left\{egin{array}{l} g_{lphaeta}\mapsto \widetilde{g}_{lphaeta}=\Omega^2 g_{lphaeta}\ \phi\mapsto \widetilde{\phi}=\Omega^{-1}\phi \end{array}
ight.$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.
 The BBMB solution [N. Bocharova et al.-70, J. Bekenstein-74]

Conformal secondary hair?

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) \mathrm{d}^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\left\{egin{array}{l} g_{lphaeta}\mapsto ilde{g}_{lphaeta}=\Omega^2 g_{lphaeta}\ \phi\mapsto ilde{\phi}=\Omega^{-1}\phi \end{array}
ight.$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.
 The BBMB solution [N. Bocharova et al.-70, J. Bekenstein-74]

Conformal secondary hair?

The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74]

• Static and spherically symmetric solution

$$\mathrm{d}s^{2} = -\left(1 - \frac{m}{r}\right)^{2}\mathrm{d}t^{2} + \frac{\mathrm{d}r^{2}}{\left(1 - \frac{m}{r}\right)^{2}} + r^{2}\left(\mathrm{d}\theta^{2} + \sin^{2}\theta\mathrm{d}\varphi^{2}\right)$$

with secondary scalar hair

$$\phi = \sqrt{\frac{3}{4\pi G}} \frac{m}{r - m}$$

• Geometry is that of an extremal RN. Problem:The scalar field is **unbounded** at (r = m)

• Controversy on the stability [Bronnikov et al.-78, McFadden et al.-05] Not clear that the solution is a black hole.

Conformal secondary hair?

The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74]

• Static and spherically symmetric solution

$$\mathrm{d}s^{2} = -\left(1 - \frac{m}{r}\right)^{2}\mathrm{d}t^{2} + \frac{\mathrm{d}r^{2}}{\left(1 - \frac{m}{r}\right)^{2}} + r^{2}\left(\mathrm{d}\theta^{2} + \sin^{2}\theta\mathrm{d}\varphi^{2}\right)$$

with secondary scalar hair

$$\phi = \sqrt{\frac{3}{4\pi G}} \frac{m}{r - m}$$

Geometry is that of an extremal RN.
 Problem: The scalar field is unbounded at (r = m)

• Controversy on the stability [Bronnikov et al.-78, McFadden et al.-05] Not clear that the solution is a black hole.

Conformal secondary hair?

The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74]

• Static and spherically symmetric solution

$$\mathrm{d}s^{2} = -\left(1 - \frac{m}{r}\right)^{2}\mathrm{d}t^{2} + \frac{\mathrm{d}r^{2}}{\left(1 - \frac{m}{r}\right)^{2}} + r^{2}\left(\mathrm{d}\theta^{2} + \sin^{2}\theta\mathrm{d}\varphi^{2}\right)$$

with secondary scalar hair

$$\phi = \sqrt{\frac{3}{4\pi G}} \frac{m}{r-m}$$

• Controversy on the stability [Bronnikov et al.-78, McFadden et al.-05] Not clear that the solution is a black hole.

Conformal secondary hair?

Scalar-tensor theories and black holes

- In scalar tensor theories "regular" black hole solutions are GR black holes with a constant scalar field
- Is it possible to have non-trivial and regular scalar-tensor black holes for an asymptotically flat space-time?
- How can we evade no-hair theorems?

Conformal secondary hair?

Scalar-tensor theories and black holes

- In scalar tensor theories "regular" black hole solutions are GR black holes with a constant scalar field
- Is it possible to have non-trivial and regular scalar-tensor black holes for an asymptotically flat space-time?

• How can we evade no-hair theorems?

Conformal secondary hair?

Scalar-tensor theories and black holes

- In scalar tensor theories "regular" black hole solutions are GR black holes with a constant scalar field
- Is it possible to have non-trivial and regular scalar-tensor black holes for an asymptotically flat space-time?
- How can we evade no-hair theorems?

Resolution step by step Example solutions

Introduction/Motivation

- Gravity modification: issues and guidelines
- 2 Scalar-tensor theories and no hair
- Scalar-tensor black holes and the no hair paradigm
 Conformal secondary hair?
- 4 Building higher order scalar-tensor black holes
 - Resolution step by step
 - Example solutions

5 Hairy black hole

6 Adding matter

Conclusions

Resolution step by step Example solutions

Higher order scalar-tensor theory

Construct black hole solutions for,

- Higher order scalar tensor theory: Horndeski/Galileon theory (Lovelock/Lanczos theory)
- Shift symmetry for the scalar
- Spherically symmetric and static space-time.

Resolution step by step Example solutions

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

• Metric field equations read,

- Scalar field has translational invariance $:\phi \to \phi + \text{const.}$,
- Scalar field equation can be written in terms of a current

$$abla_{\mu}J^{\mu}=0, \ \ J^{\mu}=\left(\eta g^{\mu
u}-eta G^{\mu
u}
ight)\partial_{
u}\phi.$$

Resolution step by step Example solutions

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

• Metric field equations read,

$$egin{aligned} &\zeta \mathcal{G}_{\mu
u} - \eta \left(\partial_\mu \phi \partial_
u \phi - rac{1}{2} \mathcal{g}_{\mu
u} (\partial \phi)^2
ight) + \mathcal{g}_{\mu
u} \mathcal{I} \ &+ rac{eta}{2} \left((\partial \phi)^2 \mathcal{G}_{\mu
u} + 2 P_{\mulpha
ueta}
abla^{lpha
ho \sigma} \phi
abla^{eta} \phi \ &+ \mathcal{g}_{\mulpha} \delta^{lpha
ho \sigma}_{
u\gamma\delta}
abla^{\gamma}
abla_{
u\gamma\delta} \delta^{
u\gamma}
abla^{\delta}
abla^{\sigma} \nabla^{\gamma}
abla_{
u} \phi
abla^{\delta}
abla^{\sigma} \phi \ &= 0, \end{aligned}$$

- Scalar field has translational invariance : $\phi \rightarrow \phi + \text{const.}$,
- Scalar field equation can be written in terms of a current

$$\nabla_{\mu}J^{\mu}=0, \ J^{\mu}=(\eta g^{\mu\nu}-\beta G^{\mu\nu})\,\partial_{\nu}\phi.$$

Take $ds^2=-h(r)dt^2+rac{dr^2}{f(r)}+r^2d\Omega^2$, $\phi=\phi(r)$ then scalar equation

Resolution step by step Example solutions

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

- Scalar field has translational invariance $:\phi \to \phi + \text{const.}$,
- Scalar field equation can be written in terms of a current

$$\nabla_{\mu}J^{\mu} = 0, \ J^{\mu} = \left(\eta g^{\mu\nu} - \beta G^{\mu\nu}\right) \partial_{\nu}\phi.$$

- Take ds² = −h(r)dt² + dr²/f(r) + r²dΩ², φ = φ(r) then scalar equation is integrable... (ηg^{rr} − βG^{rr})√gφ' = c
- but current is singular J² = J^μJ^νg_{μν} = (J^r)²g_{rr} unless J^r = 0 at the horizon...

Generically $\phi = constant$ everywhere [Bui and Nicolis] and we have again the appearance of a no-hair theorem...

Resolution step by step Example solutions

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

- Scalar field has translational invariance : $\phi \rightarrow \phi + \text{const.}$,
- Scalar field equation can be written in terms of a current

$$\nabla_{\mu}J^{\mu}=0, \ J^{\mu}=\left(\eta g^{\mu\nu}-\beta G^{\mu\nu}\right)\partial_{\nu}\phi.$$

In scalar equation, $\eta g^{\mu\nu} - \beta G^{\mu\nu} \rightarrow \text{metric EoM}$ $R \rightarrow G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$, $\Lambda \rightarrow g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$

- Take $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$, $\phi = \phi(r)$ then scalar equation is integrable... $(\eta g^{rr} - \beta G^{rr})\sqrt{g}\phi' = c$
- but current is singular $J^2 = J^{\mu}J^{\nu}g_{\mu\nu} = (J^r)^2g_{rr}$ unless $J^r = 0$ at the horizon...

Resolution step by step Example solutions

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

- Scalar field has translational invariance : $\phi \rightarrow \phi + \text{const.}$,
- Scalar field equation can be written in terms of a current

$$\nabla_{\mu}J^{\mu} = 0, \ J^{\mu} = \left(\eta g^{\mu\nu} - \beta G^{\mu\nu}\right) \partial_{\nu}\phi.$$

- Take ds² = −h(r)dt² + dr²/f(r) + r²dΩ², φ = φ(r) then scalar equation is integrable... (ηg^{rr} − βG^{rr})√gφ' = c
- but current is singular $J^2 = J^{\mu}J^{\nu}g_{\mu\nu} = (J^r)^2g_{rr}$ unless $J^r = 0$ at the horizon...

Generically $\phi = constant$ everywhere [Hui and Nicolis] and we have again the appearance of a no-hair theorem...

Resolution step by step Example solutions

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

- Scalar field has translational invariance : $\phi \rightarrow \phi + \text{const.}$,
- Scalar field equation can be written in terms of a current

$$\nabla_{\mu}J^{\mu} = 0, \ J^{\mu} = \left(\eta g^{\mu\nu} - \beta G^{\mu\nu}\right) \partial_{\nu}\phi.$$

- Take ds² = −h(r)dt² + dr²/f(r) + r²dΩ², φ = φ(r) then scalar equation is integrable... (ηg^{rr} − βG^{rr})√gφ' = c
- but current is singular $J^2 = J^{\mu}J^{\nu}g_{\mu\nu} = (J^r)^2g_{rr}$ unless $J^r = 0$ at the horizon...

Generically $\phi = constant$ everywhere [Hui and Nicolis] and we have again the appearance of a no-hair theorem...

Resolution step by step Example solutions

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

- Scalar field has translational invariance : $\phi \rightarrow \phi + \text{const.}$,
- Scalar field equation can be written in terms of a current

$$\nabla_{\mu}J^{\mu} = 0, \ J^{\mu} = \left(\eta g^{\mu\nu} - \beta G^{\mu\nu}\right) \partial_{\nu}\phi.$$

- Take ds² = −h(r)dt² + dr²/f(r) + r²dΩ², φ = φ(r) then scalar equation is integrable... (ηg^{rr} − βG^{rr})√gφ' = c
- but current is singular $J^2 = J^{\mu}J^{\nu}g_{\mu\nu} = (J^r)^2g_{rr}$ unless $J^r = 0$ at the horizon...

Generically $\phi = constant$ everywhere [Hui and Nicolis] and we have again the appearance of a no-hair theorem...

Resolution step by step Example solutions

Time dependent scalar field

- Set $\beta G^{rr} \eta g^{rr} = 0$ rendering the scalar equation "redundant"...
- Consider $\phi = \phi(t, r)$ with static space-time,

$$ds^{2} = -h(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega^{2}$$

- (tr)-component of EoM is non trivial and reads, $\frac{\beta \phi'}{r^2} \left(\frac{r \hbar'}{\hbar} + \left(f - 1 - \frac{\eta r^2}{\beta} \right) \dot{\phi} - 2r f \dot{\phi}' \right) = 0$
- General solution, $\phi(t, r) = \psi(r) + q_1(t)e^{X(r)}$ with $X(r) = \frac{1}{2}\int dr \left(\frac{1}{r} - \frac{1}{r} - \frac{\eta r}{\beta f} + \frac{h'}{b}\right)$ and $\ddot{q}_1(t) = C_1q_1(t) + C_2$
- Simplest solution softly breaking translational invariance q₁(t) = q t and thus φ(t,r) = q t + ψ(r)

Resolution step by step Example solutions

Time dependent scalar field

- Set $\beta G^{rr} \eta g^{rr} = 0$ rendering the scalar equation "redundant"...
- Consider $\phi = \phi(t, r)$ with static space-time,

$$ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$$

- (tr)-component of EoM is non trivial and reads, $\frac{\beta \phi'}{r^2} \left(\frac{r \hbar'}{\hbar} + \left(f - 1 - \frac{\eta r^2}{\beta} \right) \dot{\phi} - 2r f \dot{\phi}' \right) = 0$
- General solution, $\phi(t, r) = \psi(r) + q_1(t)e^{X(r)}$ with $X(r) = \frac{1}{2} \int dr \left(\frac{1}{r} - \frac{1}{rf} - \frac{\eta r}{\beta f} + \frac{h'}{\hbar}\right)$ and $\ddot{q}_1(t) = C_1q_1(t) + C_2$
- Simplest solution softly breaking translational invariance q₁(t) = q t and thus φ(t, r) = q t + ψ(r)

Resolution step by step Example solutions

Time dependent scalar field

- Set $\beta G^{rr} \eta g^{rr} = 0$ rendering the scalar equation "redundant"...
- Consider $\phi = \phi(t, r)$ with static space-time,

$$ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$$

- (tr)-component of EoM is non trivial and reads, $\frac{\beta\phi'}{r^2} \left(\frac{r\hbar'}{\hbar} + \left(f - 1 - \frac{\eta r^2}{\beta} \right) \dot{\phi} - 2rf \dot{\phi}' \right) = 0$
- General solution, $\phi(t,r) = \psi(r) + q_1(t)e^{X(r)}$ with $X(r) = \frac{1}{2}\int dr \left(\frac{1}{r} \frac{\eta r}{\beta f} + \frac{h'}{\beta f}\right)$ and $\ddot{q}_1(t) = C_1q_1(t) + C_2$
- Simplest solution softly breaking translational invariance q₁(t) = q t and thus φ(t, r) = q t + ψ(r)

o time derivatives present in the field equations.

Resolution step by step Example solutions

Time dependent scalar field

- Set $\beta G^{rr} \eta g^{rr} = 0$ rendering the scalar equation "redundant"...
- Consider $\phi = \phi(t, r)$ with static space-time,

$$ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$$

- (tr)-component of EoM is non trivial and reads, $\frac{\beta\phi'}{r^2} \left(\frac{r\hbar'}{h} + \left(f - 1 - \frac{\eta r^2}{\beta}\right)\dot{\phi} - 2rf\dot{\phi}'\right) = 0$
- General solution, $\phi(t, r) = \psi(r) + q_1(t)e^{X(r)}$ with $X(r) = \frac{1}{2} \int dr \left(\frac{1}{r} - \frac{1}{rf} - \frac{\eta r}{\beta f} + \frac{h'}{h}\right) \text{ and } \ddot{q}_1(t) = C_1q_1(t) + C_2$
- Simplest solution softly breaking translational invariance q₁(t) = q t and thus φ(t, r) = q t + ψ(r)

Resolution step by step Example solutions

Time dependent scalar field

- Set $\beta G^{rr} \eta g^{rr} = 0$ rendering the scalar equation "redundant"...
- Consider $\phi = \phi(t, r)$ with static space-time,

$$ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$$

- (tr)-component of EoM is non trivial and reads, $\frac{\beta\phi'}{r^2} \left(\frac{r\hbar'}{h} + \left(f - 1 - \frac{\eta r^2}{\beta}\right)\dot{\phi} - 2rf\dot{\phi}'\right) = 0$ • General solution, $\phi(t, r) = \psi(r) + q_1(t)e^{X(r)}$ with
 - $X(r) = \frac{1}{2} \int dr \left(\frac{1}{r} \frac{1}{rf} \frac{\eta r}{\beta f} + \frac{h'}{h} \right) \text{ and } \ddot{q}_1(t) = C_1 q_1(t) + C_2$
- Simplest solution softly breaking translational invariance $q_1(t) = q t$ and thus $\phi(t, r) = q t + \psi(r)$

No time derivatives present in the field equations

Resolution step by step Example solutions

Scalar field equation

- Hypotheses: $\beta G^{rr} \eta g^{rr} = 0$ and $\phi(t, r) = q t + \psi(r)$,
- $-\partial_r[(\beta G^{rr} \eta g^{rr})\partial_r \psi] \partial_t[(\beta G^{tt} \eta g^{tt})\partial_t(qt)] = 0$
- no scalar charge, current ok, $\phi \neq$ 0, and (tr)-eq satisfied
- Geometric constraint, $f = \frac{(\beta + \eta r^2)h}{\beta(rh)'}$, fixing spherically symmetric gauge.

•
$$ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$$

 We need to find ψ(r) and h(r) and have two ODE's to solve, the (rr) and (tt). Hence hypotheses are consistent.

Resolution step by step Example solutions

Scalar field equation

- Hypotheses: $\beta G^{rr} \eta g^{rr} = 0$ and $\phi(t, r) = q t + \psi(r)$,
- $-\partial_r[(\beta G^{rr} \eta g^{rr})\partial_r \psi] \partial_t[(\beta G^{tt} \eta g^{tt})\partial_t(qt)] = 0$
- no scalar charge, current ok, $\phi \neq$ 0, and (tr)-eq satisfied
- Geometric constraint, $f = \frac{(\beta + \eta r^2)h}{\beta(rh)'}$, fixing spherically symmetric gauge.

•
$$ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$$

 We need to find ψ(r) and h(r) and have two ODE's to solve, the (rr) and (tt). Hence hypotheses are consistent.

Resolution step by step Example solutions

Scalar field equation

- Hypotheses: $\beta G^{rr} \eta g^{rr} = 0$ and $\phi(t, r) = q t + \psi(r)$,
- $-\partial_r[(\beta G^{rr} \eta g^{rr})\partial_r \psi] \partial_t[(\beta G^{tt} \eta g^{tt})\partial_t(qt)] = 0$
- no scalar charge, current ok, $\phi \neq$ 0, and (tr)-eq satisfied
- Geometric constraint, $f = \frac{(\beta + \eta r^2)h}{\beta(rh)'}$, fixing spherically symmetric gauge.

•
$$ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$$

 We need to find ψ(r) and h(r) and have two ODE's to solve, the (rr) and (tt). Hence hypotheses are consistent.

Resolution step by step Example solutions

Scalar field equation

- Hypotheses: $\beta G^{rr} \eta g^{rr} = 0$ and $\phi(t, r) = q t + \psi(r)$,
- $-\partial_r[(\beta G^{rr} \eta g^{rr})\partial_r \psi] \partial_t[(\beta G^{tt} \eta g^{tt})\partial_t(qt)] = 0$
- no scalar charge, current ok, $\phi \neq$ 0, and (tr)-eq satisfied
- Geometric constraint, $f = \frac{(\beta + \eta r^2)h}{\beta(rh)'}$, fixing spherically symmetric gauge.

•
$$ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$$

We need to find ψ(r) and h(r) and have two ODE's to solve, the (rr) and (tt). Hence hypotheses are consistent.

Resolution step by step Example solutions

Solving the remaining EoM

• From (rr)-component get ψ'

$$\psi' = \pm \frac{\sqrt{r}}{h(\beta + \eta r^2)} \left(q^2 \beta (\beta + \eta r^2) h' - \frac{\lambda}{2} (h^2 r^2)' \right)^{1/2}$$

with

 $\lambda \equiv \zeta \eta + \beta \Lambda$

• For $\eta = \Lambda = 0$ time dependence is essential!!

and finally (tt)-component gives h(r) via,

$$h(r) = -\frac{\mu}{r} + \frac{1}{r} \int \frac{k(r)}{\beta + \eta r^2} dr,$$

with

$$q^{2}\beta(\beta + \eta r^{2})^{2} - (2\zeta\beta + (2\zeta\eta - \lambda)r^{2})k + C_{0}k^{3/2} = 0,$$

Any solution to the algebraic eq for k = k(r) gives full solution to the system

Resolution step by step Example solutions

Solving the remaining EoM

• From (rr)-component get ψ'

$$\psi' = \pm \frac{\sqrt{r}}{h(\beta + \eta r^2)} \left(q^2 \beta (\beta + \eta r^2) h' - \frac{\lambda}{2} (h^2 r^2)' \right)^{1/2}$$

with

 $\lambda \equiv \zeta \eta + \beta \Lambda$

- For $\eta = \Lambda = 0$ time dependence is essential!!
- and finally (tt)-component gives h(r) via,

$$h(r) = -\frac{\mu}{r} + \frac{1}{r} \int \frac{k(r)}{\beta + \eta r^2} dr,$$

with

$$q^{2}\beta(\beta+\eta r^{2})^{2}-\left(2\zeta\beta+\left(2\zeta\eta-\lambda\right)r^{2}\right)k+C_{0}k^{3/2}=0,$$

Any solution to the algebraic eq for k = k(r) gives full solution to the system

Resolution step by step Example solutions

Solving the remaining EoM

• From (rr)-component get ψ'

$$\psi' = \pm \frac{\sqrt{r}}{h(\beta + \eta r^2)} \left(q^2 \beta (\beta + \eta r^2) h' - \frac{\lambda}{2} (h^2 r^2)' \right)^{1/2}$$

with

 $\lambda \equiv \zeta \eta + \beta \Lambda$

- For $\eta = \Lambda = 0$ time dependence is essential!!
- and finally (tt)-component gives h(r) via,

$$h(r)=-\frac{\mu}{r}+\frac{1}{r}\int\frac{k(r)}{\beta+\eta r^2}dr,$$

with

$$q^{2}\beta(\beta+\eta r^{2})^{2}-\left(2\zeta\beta+\left(2\zeta\eta-\lambda\right)r^{2}\right)k+C_{0}k^{3/2}=0,$$

Any solution to the algebraic eq for k = k(r) gives full solution to the system!

Resolution step by step Example solutions

Fab 4 limit: $\Lambda = 0$, $\eta = 0$

- Consider $S = \int d^4 x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right) = 0$
- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{rr} = 0 \rightarrow f = \frac{h}{(rh)^{\prime}}$ and $\phi(t, r) = q t + \psi(r)$
- (rr)-EOM gives $\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$
- (tt)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \rightarrow k = constant!$
- $f(r) = h(r) = 1 \mu/r$

on the horizon?

Resolution step by step Example solutions

Fab 4 limit: $\Lambda = 0$, $\eta = 0$

- Consider $S = \int d^4 x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right) = 0$
- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{rr} = 0 \rightarrow f = \frac{h}{(rh)'}$ and $\phi(t, r) = q t + \psi(r)$
- (rr)-EOM gives $\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$
- (tt)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \rightarrow k = constant!$
- $f(r) = h(r) = 1 \mu/r$

on the horizon?

Resolution step by step Example solutions

Fab 4 limit: $\Lambda = 0$, $\eta = 0$

- Consider $S = \int d^4 x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right) = 0$
- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{rr} = 0 \rightarrow f = \frac{h}{(rh)^r}$ and $\phi(t, r) = q t + \psi(r)$
- (rr)-EOM gives $\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$
- (tt)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \to k = constant!$

•
$$f(r) = h(r) = 1 - \mu/r$$

Resolution step by step Example solutions

Fab 4 limit: $\Lambda = 0$, $\eta = 0$

- Consider $S = \int d^4 x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right) = 0$
- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{rr} = 0 \rightarrow f = \frac{h}{(rh)^{\prime}}$ and $\phi(t, r) = q t + \psi(r)$
- (rr)-EOM gives $\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$
- (tt)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \rightarrow k = constant!$

•
$$f(r) = h(r) = 1 - \mu/r$$

Resolution step by step Example solutions

Fab 4 limit: $\Lambda = 0$, $\eta = 0$

- Consider $S = \int d^4 x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right) = 0$
- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{rr} = 0 \rightarrow f = \frac{h}{(rh)^r}$ and $\phi(t, r) = q t + \psi(r)$
- (rr)-EOM gives $\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$
- (tt)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \rightarrow k = constant!$

•
$$f(r) = h(r) = 1 - \mu/r$$

Resolution step by step Example solutions

Fab 4 limit: $\Lambda = 0$, $\eta = 0$

• Consider $S = \int d^4 x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$

•
$$G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right) = 0$$

• in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation

•
$$G^{rr} = 0 \rightarrow f = \frac{h}{(rh)^r}$$
 and $\phi(t, r) = q t + \psi(r)$

- (rr)-EOM gives $\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$
- (*tt*)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \to k = constant!$

•
$$f(r) = h(r) = 1 - \mu/r$$

Resolution step by step Example solutions

Scalar-tensor Schwarzschild black hole

•
$$\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} - \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$$

- Scalar looks singular for $r \to r_h$ but $t_h \to \infty$!
- Consider $v = t + \int (fh)^{-1/2} dr$ then $ds^2 = -hdv^2 + 2\sqrt{h/f} dvdr + r^2 d\Omega^2$ Regular chart for horizon, EF coordinates ([Jacobson], [Ayon-Beato, Martinez & Zanelli])

•
$$\phi_+ = q \left[v - r + 2\sqrt{\mu r} - 2\mu \log \left(\sqrt{\frac{r}{\mu}} + 1 \right) \right] + \text{const}$$

- Scalar regular at future black hole horizon!
- Metric is Schwarzschild, scalar is regular and non-trivial
- Scalar linearly diverges at past and future null infinity but not its derivatives, current is constant.

Resolution step by step Example solutions

Scalar-tensor Schwarzschild black hole

•
$$\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} - \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$$

- Scalar looks singular for $r \to r_h$ but $t_h \to \infty$!
- Consider $v = t + \int (fh)^{-1/2} dr$ then $ds^2 = -hdv^2 + 2\sqrt{h/f} dvdr + r^2 d\Omega^2$ Regular chart for horizon, EF coordinates ([Jacobson], [Ayon-Beato, Martinez & Zanelli])

•
$$\phi_+ = q \left[v - r + 2\sqrt{\mu r} - 2\mu \log \left(\sqrt{\frac{r}{\mu}} + 1 \right) \right] + \text{const}$$

• Scalar regular at future black hole horizon!

- Metric is Schwarzschild, scalar is regular and non-trivial
- Scalar linearly diverges at past and future null infinity but not its derivatives, current is constant.

Resolution step by step Example solutions

Scalar-tensor Schwarzschild black hole

•
$$\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} - \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$$

- Scalar looks singular for $r \to r_h$ but $t_h \to \infty$!
- Consider $v = t + \int (fh)^{-1/2} dr$ then $ds^2 = -hdv^2 + 2\sqrt{h/f} dvdr + r^2 d\Omega^2$ Regular chart for horizon, EF coordinates ([Jacobson], [Ayon-Beato, Martinez & Zanelli])

•
$$\phi_+ = q \left[v - r + 2\sqrt{\mu r} - 2\mu \log \left(\sqrt{\frac{r}{\mu}} + 1\right) \right] + \text{const}$$

- Scalar regular at future black hole horizon!
- Metric is Schwarzschild, scalar is regular and non-trivial
- Scalar linearly diverges at past and future null infinity but not its derivatives, current is constant.

Resolution step by step Example solutions

Scalar-tensor Schwarzschild black hole

•
$$\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} - \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$$

- Scalar looks singular for $r \to r_h$ but $t_h \to \infty$!
- Consider $v = t + \int (fh)^{-1/2} dr$ then $ds^2 = -hdv^2 + 2\sqrt{h/f} dvdr + r^2 d\Omega^2$ Regular chart for horizon, EF coordinates ([Jacobson], [Ayon-Beato, Martinez & Zanelli])

•
$$\phi_+ = q \left[v - r + 2\sqrt{\mu r} - 2\mu \log \left(\sqrt{\frac{r}{\mu}} + 1\right) \right] + \text{const}$$

- Scalar regular at future black hole horizon!
- Metric is Schwarzschild, scalar is regular and non-trivial
- Scalar linearly diverges at past and future null infinity but not its derivatives, current is constant.

Resolution step by step Example solutions

All solutions are not "GR like" (but need $\eta \neq 0$ or $\Lambda \neq 0$)

Need to solve:

$$q^{2}\beta(\beta + \eta r^{2})^{2} - (2\zeta\beta + (2\zeta\eta - \lambda)r^{2})k + C_{0}k^{3/2} = 0$$

with

$$h(r) = -\frac{\mu}{r} + \frac{1}{r} \int \frac{k(r)}{\beta + \eta r^2} dr$$

• Example: Black hole in an Einstein static universe $(\zeta \eta + \beta \Lambda = 0)$

•
$$h = 1 - \frac{\mu}{r}, f = \left(1 - \frac{\mu}{r}\right)\left(1 + \frac{\eta r^2}{\beta}\right)$$

•
$$\psi' = \pm \frac{q}{h} \sqrt{\frac{\mu}{r(1+\frac{\eta}{\beta}r^2)}}$$
 and $\phi = qt + \psi(r)$.

• Solution is not asymptotically flat or de Sitter.

Can we get de Sitter asymptotics?

Resolution step by step Example solutions

All solutions are not "GR like" (but need $\eta \neq 0$ or $\Lambda \neq 0$)

Need to solve:

$$q^{2}\beta(\beta + \eta r^{2})^{2} - (2\zeta\beta + (2\zeta\eta - \lambda)r^{2})k + C_{0}k^{3/2} = 0$$

with

$$h(r) = -\frac{\mu}{r} + \frac{1}{r} \int \frac{k(r)}{\beta + \eta r^2} dr$$

- Example: Black hole in an Einstein static universe $(\zeta \eta + \beta \Lambda = 0)$
- $h = 1 \frac{\mu}{r}, \ f = \left(1 \frac{\mu}{r}\right) \left(1 + \frac{\eta r^2}{\beta}\right),$

•
$$\psi' = \pm \frac{q}{h} \sqrt{\frac{\mu}{r(1+\frac{\eta}{\beta}r^2)}}$$
 and $\phi = qt + \psi(r)$.

• Solution is not asymptotically flat or de Sitter.

Can we get de Sitter asymptotics?

Resolution step by step Example solutions

All solutions are not "GR like" (but need $\eta \neq 0$ or $\Lambda \neq 0$)

Need to solve:

$$q^{2}\beta(\beta + \eta r^{2})^{2} - (2\zeta\beta + (2\zeta\eta - \lambda)r^{2})k + C_{0}k^{3/2} = 0$$

with

$$h(r) = -\frac{\mu}{r} + \frac{1}{r} \int \frac{k(r)}{\beta + \eta r^2} dr$$

• Example: Black hole in an Einstein static universe ($\zeta \eta + \beta \Lambda = 0$)

•
$$h = 1 - \frac{\mu}{r}, \ f = \left(1 - \frac{\mu}{r}\right) \left(1 + \frac{\eta r^2}{\beta}\right),$$

•
$$\psi' = \pm \frac{q}{h} \sqrt{\frac{\mu}{r(1+\frac{\eta}{\beta}r^2)}}$$
 and $\phi = qt + \psi(r)$.

• Solution is not asymptotically flat or de Sitter.

Can we get de Sitter asymptotics?

Resolution step by step Example solutions

de Sitter black hole

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R 2\Lambda \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2 (2\zeta\beta+(2\zeta\eta-\lambda)r^2)k + C_0k^{3/2} = 0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h}\sqrt{1-h}$ and $\phi(t,r) = q t + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

Resolution step by step Example solutions

de Sitter black hole

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R 2\Lambda \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2 (2\zeta\beta+(2\zeta\eta-\lambda)r^2)k + C_0k^{3/2} = 0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h}\sqrt{1-h}$ and $\phi(t,r) = q t + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

Resolution step by step Example solutions

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R 2\Lambda \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2 (2\zeta\beta+(2\zeta\eta-\lambda)r^2)k + C_0k^{3/2} = 0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h}\sqrt{1-h}$ and $\phi(t,r) = qt + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

Resolution step by step Example solutions

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R 2\Lambda \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2 (2\zeta\beta+(2\zeta\eta-\lambda)r^2)k + C_0k^{3/2} = 0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h}\sqrt{1-h}$ and $\phi(t,r) = qt + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

Resolution step by step Example solutions

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R 2\Lambda \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2 (2\zeta\beta+(2\zeta\eta-\lambda)r^2)k + C_0k^{3/2} = 0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h}\sqrt{1-h}$ and $\phi(t,r) = qt + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

Resolution step by step Example solutions

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R 2\Lambda \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$
- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2 (2\zeta\beta+(2\zeta\eta-\lambda)r^2)k + C_0k^{3/2} = 0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h}\sqrt{1-h}$ and $\phi(t,r) = qt + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

Resolution step by step Example solutions

- We have $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ with $\Lambda_{\text{eff}} = -\eta/\beta$ $S = \int d^4x \sqrt{-g} \left[R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$
- The effective cosmological constant is not the vacuum cosmological constant. In fact,
- $q^2\eta = \Lambda \Lambda_{eff} > 0$
- Hence for any arbitrary $\Lambda > \Lambda_{eff}$ fixes q, integration constant.
- where Λ_{eff} is a geometric acceleration
- Solution self tunes vacuum cosmological constant but has "action induced" effective cosmological constant

Resolution step by step Example solutions

- We have $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ with $\Lambda_{\text{eff}} = -\eta/\beta$ $S = \int d^4x \sqrt{-g} \left[R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$
- The effective cosmological constant is not the vacuum cosmological constant. In fact,
- $q^2\eta = \Lambda \Lambda_{eff} > 0$
- Hence for any arbitrary $\Lambda > \Lambda_{eff}$ fixes q, integration constant.
- where Λ_{eff} is a geometric acceleration
- Solution self tunes vacuum cosmological constant but has "action induced" effective cosmological constant

Resolution step by step Example solutions

- We have $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ with $\Lambda_{\text{eff}} = -\eta/\beta$ $S = \int d^4x \sqrt{-g} \left[R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$
- The effective cosmological constant is not the vacuum cosmological constant. In fact,
- $q^2\eta = \Lambda \Lambda_{eff} > 0$
- Hence for any arbitrary $\Lambda > \Lambda_{eff}$ fixes q, integration constant.
- where Λ_{eff} is a geometric acceleration
- Solution self tunes vacuum cosmological constant but has "action induced" effective cosmological constant

Resolution step by step Example solutions

- We have $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ with $\Lambda_{\text{eff}} = -\eta/\beta$ $S = \int d^4x \sqrt{-g} \left[R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$
- The effective cosmological constant is not the vacuum cosmological constant. In fact,
- $q^2\eta = \Lambda \Lambda_{eff} > 0$
- Hence for any arbitrary $\Lambda > \Lambda_{eff}$ fixes q, integration constant.
- where Λ_{eff} is a geometric acceleration
- Solution self tunes vacuum cosmological constant but has "action induced" effective cosmological constant

Introduction/Motivation

- Gravity modification: issues and guidelines
- 2 Scalar-tensor theories and no hair
- Scalar-tensor black holes and the no hair paradigm
 Conformal secondary hair?
- 4 Building higher order scalar-tensor black holes
 - Resolution step by step
 - Example solutions

5 Hairy black hole

6 Adding matter

Conclusions

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) \mathrm{d}^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\left(egin{array}{ll} g_{lphaeta}\mapsto \widetilde{g}_{lphaeta}=\Omega^2 g_{lphaeta}\ \phi\mapsto \widetilde{\phi}=\Omega^{-1}\phi \end{array}
ight.$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.
 The BBMB solution [N. Bocharova et al.-70, J. Bekenstein-74]

Conclusions

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) \mathrm{d}^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\left\{egin{array}{l} g_{lphaeta}\mapsto \widetilde{g}_{lphaeta}=\Omega^2 g_{lphaeta}\ \phi\mapsto \widetilde{\phi}=\Omega^{-1}\phi \end{array}
ight.$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.
 The BBMB solution [N. Bocharova et al.-70, J. Bekenstein-74]

Conclusions

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) \mathrm{d}^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\left\{egin{array}{l} g_{lphaeta}\mapsto ilde{g}_{lphaeta}=\Omega^2 g_{lphaeta}\ \phi\mapsto ilde{\phi}=\Omega^{-1}\phi \end{array}
ight.$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.
 The BBMB solution [N. Bocharova et al.-70, J. Bekenstein-74]

BBMB completion [CC, Kolyvaris, Papantonopoulos and Tsoukalas]

- We would like to combine the above properties in order to obtain a hairy black hole.
- Consider the following action, $S(g_{\mu
 u},\phi,\psi)={f S}_0+{f S}_1$ where

$$S_0 = \int dx^4 \sqrt{-g} \left[\zeta R + \eta \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} \phi^2 R \right) \right]$$

and

$$S_1 = \int dx^4 \sqrt{-g} \left(eta \, G_{\mu
u}
abla^\mu \Psi
abla^
u \Psi - \gamma \, T^{BBMB}_{\mu
u}
abla^\mu \Psi
abla^
u \Psi
ight) \, ,$$

where

$$T^{BBMB}_{\mu
u} = rac{1}{2}
abla_{\mu} \phi
abla_{
u} \phi - rac{1}{4} g_{\mu
u}
abla_{lpha} \phi
abla^{lpha} \phi + rac{1}{12} \left(g_{\mu
u} \Box -
abla_{\mu}
abla_{
u} + G_{\mu
u}
ight) \phi^2 \, ,$$

• Scalar field equation of S_1 contains metric equation of S_0

$$_{\mu}J^{\mu} = 0 , \qquad J^{\mu} = \left(\beta G_{\mu\nu} - \gamma T^{BBMB}_{\mu\nu}\right)
abla^{
u}$$

BBMB completion [CC, Kolyvaris, Papantonopoulos and Tsoukalas]

- We would like to combine the above properties in order to obtain a hairy black hole.
- Consider the following action, $S(g_{\mu\nu},\phi,\psi)=S_0+S_1$ where

$$S_0 = \int dx^4 \sqrt{-g} \left[\zeta R + \eta \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} \phi^2 R \right) \right]$$

and

$$S_{1} = \int dx^{4} \sqrt{-g} \left(\beta G_{\mu\nu} \nabla^{\mu} \Psi \nabla^{\nu} \Psi - \gamma T^{BBMB}_{\mu\nu} \nabla^{\mu} \Psi \nabla^{\nu} \Psi \right)$$

where

$$T^{BBMB}_{\mu
u} = rac{1}{2}
abla_{\mu} \phi
abla_{
u} \phi - rac{1}{4} g_{\mu
u}
abla_{lpha} \phi
abla^{lpha} \phi + rac{1}{12} \left(g_{\mu
u} \Box -
abla_{\mu}
abla_{
u} + \mathcal{G}_{\mu
u}
ight) \phi^2 \; .$$

• Scalar field equation of S_1 contains metric equation of S_0

$${}^7{}_\mu J^\mu = 0 \;, \qquad J^\mu = \left(eta \, {\sf G}_{\mu
u} - \gamma \, {\sf T}^{BBMB}_{\mu
u}
ight)
abla^
u {
m V}$$

BBMB completion [CC, Kolyvaris, Papantonopoulos and Tsoukalas]

- We would like to combine the above properties in order to obtain a hairy black hole.
- Consider the following action, $S(g_{\mu\nu},\phi,\psi)=S_0+S_1$ where

$$S_0 = \int dx^4 \sqrt{-g} \left[\zeta R + \eta \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} \phi^2 R \right) \right]$$

and

۰

$$S_{1} = \int dx^{4} \sqrt{-g} \left(\beta G_{\mu\nu} \nabla^{\mu} \Psi \nabla^{\nu} \Psi - \gamma T^{BBMB}_{\mu\nu} \nabla^{\mu} \Psi \nabla^{\nu} \Psi \right)$$

where

$$T^{BBMB}_{\mu
u} = rac{1}{2}
abla_{\mu} \phi
abla_{
u} \phi - rac{1}{4} g_{\mu
u}
abla_{lpha} \phi
abla^{lpha} \phi + rac{1}{12} \left(g_{\mu
u} \Box -
abla_{\mu}
abla_{
u} + \mathcal{G}_{\mu
u}
ight) \phi^2 \; .$$

• Scalar field equation of S_1 contains metric equation of S_0 .

$$abla_\mu J^\mu = 0 \;, \qquad J^\mu = \left(eta {old G}_{\mu
u} - \gamma {old T}^{BBMB}_{\mu
u}
ight)
abla^
u V_\mu$$

BBMB completion [CC, Kolyvaris, Papantonopoulos and Tsoukalas]

- We would like to combine the above properties in order to obtain a hairy black hole.
- Consider the following action, $S(g_{\mu\nu},\phi,\psi)=S_0+S_1$ where

$$S_0 = \int dx^4 \sqrt{-g} \left[\zeta R + \eta \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} \phi^2 R \right) \right]$$

and

$$S_{1} = \int dx^{4} \sqrt{-g} \left(\beta G_{\mu\nu} \nabla^{\mu} \Psi \nabla^{\nu} \Psi - \gamma T^{BBMB}_{\mu\nu} \nabla^{\mu} \Psi \nabla^{\nu} \Psi \right)$$

where

$$T^{BBMB}_{\mu
u} = rac{1}{2}
abla_{\mu} \phi
abla_{
u} \phi - rac{1}{4} g_{\mu
u}
abla_{lpha} \phi
abla^{lpha} \phi + rac{1}{12} \left(g_{\mu
u} \Box -
abla_{\mu}
abla_{
u} + \mathcal{G}_{\mu
u}
ight) \phi^2 \; .$$

• Scalar field equation of S_1 contains metric equation of S_0 .

$$abla_{\mu}J^{\mu}=0 \;, \qquad J^{\mu}=\left(eta {\it G}_{\mu
u}-\gamma {\it T}^{BBMB}_{\mu
u}
ight)
abla^{
u}\Psi$$

Conclusions

Black hole with primary hair

• Solve as before assuming linear time dependence for Ψ

• Scalar ϕ has an additional branch regular at the "horizon"

A second solution reads,

Conclusions

Black hole with primary hair

- Solve as before assuming linear time dependence for Ψ
- Scalar ϕ has an additional branch regular at the "horizon"

A second solution reads,

$$h(r) = 1 - \frac{m}{r}, \qquad f(r) = \left(1 - \frac{m}{r}\right) \left(1 - \frac{\gamma c_0^2}{12\beta r^2}\right)$$
$$\phi(r) = \frac{c_0}{r},$$
$$\psi = qv - q \int \frac{dr}{\sqrt{\left(1 - \frac{\gamma c_0^2}{12\beta r^2}\right)}} (1 \mp \sqrt{\frac{m}{r}})$$

Conclusions

Black hole with primary hair

- Solve as before assuming linear time dependence for Ψ
- Scalar \u03c6 has an additional branch regular at the "horizon" Solution reads,

$$f(r) = h(r) = 1 - \frac{m}{r} + \frac{\gamma c_0^2}{12\beta r^2}$$

$$\phi(r) = \frac{c_0}{r} ,$$

$$\psi'(r) = \pm q \frac{\sqrt{mr - \frac{\gamma c_0^2}{12\beta}}}{r h(r)},$$

$$\beta \eta + \gamma (q^2 \beta - \zeta) = 0 .$$

A second solution reads,

C. Charmousis

Fake hair for black holes

,

Conclusions

Black hole with primary hair

- Solve as before assuming linear time dependence for Ψ
- Scalar \u03c6 has an additional branch regular at the "horizon" Solution reads,

$$f(r) = h(r) = 1 - \frac{m}{r} + \frac{\gamma c_0^2}{12\beta r^2}$$

$$\phi(r) = \frac{c_0}{r} ,$$

$$\psi'(r) = \pm q \frac{\sqrt{mr - \frac{\gamma c_0^2}{12\beta}}}{r h(r)},$$

$$\beta \eta + \gamma (q^2 \beta - \zeta) = 0 .$$

- Scalar charge c_0 playing similar role to EM charge in RN
- A second solution reads

C. Charmousis

Fake hair for black holes

,

Conclusions

Black hole with primary hair

- Solve as before assuming linear time dependence for Ψ
- Scalar \u03c6 has an additional branch regular at the "horizon" Solution reads,

$$f(r) = h(r) = 1 - \frac{m}{r} + \frac{\gamma c_0^2}{12\beta r^2}$$

$$\phi(r) = \frac{c_0}{r} ,$$

$$\psi'(r) = \pm q \frac{\sqrt{mr - \frac{\gamma c_0^2}{12\beta}}}{r h(r)},$$

$$\beta \eta + \gamma (q^2 \beta - \zeta) = 0 .$$

,

 Scalar charge c₀ playing similar role to EM charge in RN Galileon Ψ regular on the future horizon

$$\psi = qv - q \int \frac{dr}{1 + \sqrt{1 - h(r)}}$$
C. Charmousis Fake hair for black holes

Conclusions

Black hole with primary hair

- Solve as before assuming linear time dependence for Ψ
- Scalar ϕ has an additional branch regular at the "horizon"
- A second solution reads,

$$h(r) = 1 - \frac{m}{r}, \qquad f(r) = \left(1 - \frac{m}{r}\right) \left(1 - \frac{\gamma c_0^2}{12\beta r^2}\right)$$

$$\phi(r) = \frac{c_0}{r},$$

$$\psi = qv - q \int \frac{dr}{\sqrt{\left(1 - \frac{\gamma c_0^2}{12\beta r^2}\right)}} (1 \pm \sqrt{\frac{m}{r}}).$$

Introduction/Motivation

- Gravity modification:issues and guidelines
- 2 Scalar-tensor theories and no hair
- Scalar-tensor black holes and the no hair paradigm
 Conformal secondary hair?
- 4 Building higher order scalar-tensor black holes
 - Resolution step by step
 - Example solutions

5 Hairy black hole

6 Adding matter

Conclusions

Adding electromagnetic charge

Following the same idea we can add an EM field

$$I[g_{\mu\nu},\phi,A_{\mu}] = \int \sqrt{-g} d^{4}x \left[R - \eta \left(\partial \phi \right)^{2} - 2\Lambda + \beta G_{\mu\nu} \nabla^{\mu} \phi \nabla^{\nu} \phi \right]$$
$$-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \gamma T_{\mu\nu} \nabla^{\mu} \phi \nabla^{\nu} \phi \right],$$

where we have defined

$$T_{\mu
u} := rac{1}{2} \left[F_{\mu\sigma} F_{
u}^{\ \sigma} - rac{1}{4} g_{\mu
u} F_{lphaeta} F^{lphaeta}
ight].$$

Note that the coupling of the EM field is not trivial. But the scalar field equations defines a current as before

$$\nabla_{\mu} J^{\mu} = \nabla_{\mu} \left[\left(\beta \ \mathbf{G}^{\mu\nu} - \eta \ \mathbf{g}^{\mu\nu} - \gamma \ \mathbf{T}^{\mu\nu} \right) \nabla_{\nu} \phi \right] = \mathbf{0},$$

Conclusions

Adding electromagnetic charge

We consider,

$$ds^{2} = -h(r) dt^{2} + \frac{dr^{2}}{f(r)} + \frac{r^{2}}{1 - \theta^{2}} d\theta^{2} + r^{2} \theta^{2} d\chi^{2}, \qquad \phi(t, r) = \psi(r) + q t, \qquad A_{\mu} dx^{\mu} = A(r) dt.$$
(1)

We define

$$S(r) = \frac{\left(\eta r^2 + \beta\right) \left(r^2 B(r)^2 \gamma + 4 (r h(r))' \beta\right)}{4 \beta}, \qquad B(r) = A'(r),$$
(2)

and the EOM reduce to,

$$q^{2}\beta \left(\eta r^{2} + \beta\right)^{2} + \frac{r^{2} \left(\eta r^{2} + \beta\right)^{2} (\beta - \gamma) B(r)^{2}}{4\beta} - S(r) \left[(\eta - \beta \Lambda) r^{2} + 2\beta \right] + C_{0}S(r)^{3/2} = 0,$$
$$\left(\frac{\beta(\beta - \gamma)(\eta r^{2} + \beta)}{S(r)^{1/2}} + \frac{\beta \gamma C_{0}}{2}\right) B(r) = \frac{2Q}{r^{2}}$$

Conclusions

RN like solution

$$F_{rt} = B(r) = \frac{2 Q}{r^2}.$$
 (3)

The metric functions take the form

$$h(r) = f(r) = 1 + \frac{\eta r^2}{3\beta} - \frac{\mu}{r} + \frac{Q^2}{r^2}, \qquad \psi'^2 = -\frac{(f(r) - 1)q^2}{f(r)^2}, \tag{4}$$

while the coupling constants are,

$$\beta = \gamma, \qquad q^2 = \frac{\eta + \Lambda \beta}{\eta \beta} \qquad C_0 = (\eta - \beta \Lambda) \frac{\sqrt{\beta}}{\eta}$$

Introduction/Motivation

- Gravity modification: issues and guidelines
- 2 Scalar-tensor theories and no hair
- Scalar-tensor black holes and the no hair paradigm
 Conformal secondary hair?
- 4 Building higher order scalar-tensor black holes
 - Resolution step by step
 - Example solutions
- 5 Hairy black hole
- 6 Adding matter

- Have found GR black holes with a non-trivial and regular scalar field
- Shift symmetry and higher order essential!!
- Rendered scalar field eq redundant and allowed for linear time dependence
- Time dependence essential for regularity on the event horizon
- Solutions are hairy(charge q) and non-hairy (time dependent), hence fake.
- Method can be applied in differing Gallileon context [Kobayash1 and Tanahash1], in higher dimensions, including EM and other matter fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability.
- Can we go beyond spherical symmetry?

- Have found GR black holes with a non-trivial and regular scalar field
- Shift symmetry and higher order essential!!
- Rendered scalar field eq redundant and allowed for linear time dependence
- Time dependence essential for regularity on the event horizon
- Solutions are hairy(charge q) and non-hairy (time dependent), hence fake.
- Method can be applied in differing Gallileon context [Kobayash1 and Tanahash1], in higher dimensions, including EM and other matter fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability.
- Can we go beyond spherical symmetry?

- Have found GR black holes with a non-trivial and regular scalar field
- Shift symmetry and higher order essential!!
- Rendered scalar field eq redundant and allowed for linear time dependence
- Time dependence essential for regularity on the event horizon
- Solutions are hairy(charge q) and non-hairy (time dependent), hence fake.
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including EM and other matter fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability.
- Can we go beyond spherical symmetry?

- Have found GR black holes with a non-trivial and regular scalar field
- Shift symmetry and higher order essential!!
- Rendered scalar field eq redundant and allowed for linear time dependence
- Time dependence essential for regularity on the event horizon
- Solutions are hairy(charge q) and non-hairy (time dependent), hence fake.
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including EM and other matter fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability.
- Can we go beyond spherical symmetry?

- Have found GR black holes with a non-trivial and regular scalar field
- Shift symmetry and higher order essential!!
- Rendered scalar field eq redundant and allowed for linear time dependence
- Time dependence essential for regularity on the event horizon
- Solutions are hairy(charge q) and non-hairy (time dependent), hence fake.
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including EM and other matter fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability.
- Can we go beyond spherical symmetry?

- Have found GR black holes with a non-trivial and regular scalar field
- Shift symmetry and higher order essential!!
- Rendered scalar field eq redundant and allowed for linear time dependence
- Time dependence essential for regularity on the event horizon
- Solutions are hairy(charge q) and non-hairy (time dependent), hence fake.
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including EM and other matter fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability.
- Can we go beyond spherical symmetry?

- Have found GR black holes with a non-trivial and regular scalar field
- Shift symmetry and higher order essential!!
- Rendered scalar field eq redundant and allowed for linear time dependence
- Time dependence essential for regularity on the event horizon
- Solutions are hairy(charge q) and non-hairy (time dependent), hence fake.
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including EM and other matter fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability.
- Can we go beyond spherical symmetry?