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Chapter 1

Theory

1.1 Recap of General Relativity

Let us introduce coordinates xµ = (ct, xi) = (ct, x, y, z). Throughout we will take Greek
indices µ = 0 . . . 3, and Latin indices i = 1 . . . 3. The metric is an invertible symmetric ma-
trix gµν , each component of which is a function of the coordinates; i.e. gµν(x). “Symmetric”
here means that gµν = gνµ. The metric is taken to have Lorentzian signature, which means
that it has one negative and three positive eigenvalues. The metric allows us to measure
distances and times; for two points in spacetime separated by some infinitesimal change in
coordinates dxµ the proper distance interval between these points is defined to be

ds2 = gµνdxµdxν . (1.1)

The inverse metric is denoted by gµν . We use the Einstein summation convention, which
means that repeated indices, one upstairs and one downstairs, are understood to be summed
over. In other words the expression gµαgαν corresponds simply to matrix multiplication
and so by definition we have gµαgαν = δµν .

In General Relativity (GR) the metric replaces the Newtonian gravitational potential
as the unknown, and is required to satisfy Einstein’s equations:

Gµν =
8πG

c4
Tµν . (1.2)

The object on the right hand side, Tµν , is called the stress-energy tensor. G and c are New-
ton’s constant and the speed of light, respectively. The stress-energy tensor is symmetric
in µν, and encodes the local energy density, linear momentum and the stresses and strains
of any matter content. The object on the left hand side is called the Einstein tensor. It is
also symmetric, and is constructed from the Ricci tensor Rµν as

Gµν = Rµν −
1

2
gµνR , (1.3)
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with the Ricci scalar R = gµνRµν . A general feature of our notation is that, unless doing so
would clash with any previously defined quantity, if the inverse metric is used to trace over
two indices of a matrix the resulting object gets the same name but without the indices.
The Ricci curvature is in turn defined as a trace of the Riemann curvature Rµνρ

σ,

Rµν = Rµρν
ρ , (1.4)

Rµνρ
σ = ∂νΓσµρ − ∂µΓσνρ + ΓαµρΓ

σ
να − ΓανρΓ

σ
µα , (1.5)

where the Christoffel symbols are given by first derivatives of the metric,

Γγαβ =
1

2
gγδ(∂αgβδ + ∂βgαδ − ∂δgαβ) . (1.6)

With this soup of indices and derivatives it is easy to get lost, but the take home message
is that the left-hand side of the field equations contains objects related to the curvature,
and the right-hand side stuff to do with matter. This is well-desribed by Wheeler’s fa-
mous statement that “Spacetime tells matter how to move; matter tells spacetime how to
curve”. What’s more, since the curvature contains one derivative of the Christoffel, and
the Christoffel contains one derivative of the metric, we have

Gµν [∂∂g, ∂g, g] ≈ Tµν [Matter] . (1.7)

just like in Newtonian gravity which has Poisson’s equation;

∇φ = 4πGρ . (1.8)

It is important to realize however the crucial difference that in the latter case the field
equations are linear, whereas in GR they are not.

1.2 Linearized Field Equations (with matter)

To try and understand basic properties of solutions to the field equations (1.3) we can con-
sider small perturbations of a known solution. In the absence of any nontrivial gravitational
field we can introduce coordinates in which the metric becomes,

gµν = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (1.9)

just like in special relativity. Therefore let us now consider solutions with a metric of the
form gµν = ηµν + hµν , with hµν small. The inverse metric can then be written as,

gµν = ηµν − ηµαηνβhαβ +O(h2). (1.10)
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Henceforth we will allow the background metric ηµν to raise and lower indices, so that hµν ≡
ηµαηνβhαβ. Plugging this ansatz into the field equations and keeping only terms linear
in hµν we obtain, the linearized Einstein equations,

−1

2
2h̄µν + ∂λ∂(µh̄ν)λ −

1

2
ηµν∂

α∂βh̄αβ =
8πG

c4
Tµν . (1.11)

with h̄µν = hµν− 1
2ηµνh, the wave, or d’Alembert, operator is denoted by 2 ≡ ηαβ∂α∂β and

round brackets around two indices denotes symmetrization X(µν) ≡ (Xµν + Xνµ)/2. For
self-consistency of the approximation we must now assume that the stress-energy tensor
is small. On the left-hand side we see that the first term is of a simple form that often
appears elsewhere. Solutions to that operator can be treated in a standard way by using
Green’s functions. Unfortunately the second and third terms are more complicated. We
might therefore wish they were absent.

Exercise 1.1: The linearized inverse metric
Verify that, up to order h, the linearized inverse metric is indeed given
by (1.10).
•

1.3 Gauge Freedom

Consider the linearized Riemann curvature (1.5),

2Rµνλρ = ∂µ∂ρhλν − ∂µ∂λhρν − ∂ν∂ρhλµ + ∂ν∂λhρµ , (1.1)

for a metric perturbation of the form hαβ = ∂αφβ + ∂βφα we have Rµνλρ = 0.
Since the field equations are built from contractions of the curvature, this means that

we have a ‘gauge-freedom’, like the freedom to add a constant to the gravitational potential
or (more closely) like in Electromagnetism. Let us exploit this to see if we can make our
ugly equations (1.11) pretty. To do so we modify the metric perturbation by with a ‘gauge
change’ of the form,

h̄µν → h̄µν − ∂(µξν). (1.2)

By the observation above, this will take solutions of the field equations to solutions. Phys-
ically the two should then be identified. Choosing the Lorenz-gauge

2ξα = ∂βh̄αβ , (1.3)
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we find that the modified metric perturbation must satisfy,

2h̄µν = −16πG

c4
Tµν , (1.4)

∂ν h̄µν = 0 . (1.5)

This is much like Lorenz-gauge in Electromagnetism. We have succeeded in getting rid of
all of the messy looking terms in equation (1.11)!

In fact when we are in vacuum we can do even better, by noting that if we make yet
another adjustment, but this time taking 2ξ̄µ = 0, our solution will still still satisfy the
Lorenz-gauge condition. Using this we can arrive at the Transverse-Traceless (TT) gauge

h = 0 , h0j = 0 . (1.6)

To achieve this we just choose ξ̄µ such that,

∂µξ̄
µ =

1

2
h , ∂0ξ̄j + ∂j ξ̄0 = h0j . (1.7)

By imposing the additional four equations (1.6) we have used up the remaining gauge
freedom. Threrefore we expect that there are

2 = 10 # (Field equations)− 4 #(Lorenz gauge conditions)− 4 #(TT gauge conditions)

remaining physical degrees of freedom; these are the gravitational waves (GWs)!

Exercise 1.2: Curvature of a pure gauge metric perturbation
Show that the linearized Riemann tensor (1.1) vanishes for a metric pertur-
bation of the form hαβ = ∂αφβ+∂βφα. Hint: substitute the perturbation into
the expression and use equality of mixed partials.
•

Exercise 1.3: Linearized Gravity in Lorenz-gauge
Starting with the stated gauge adjustment, show that equations (1.4) and (1.5)
hold true in the Lorenz gauge. You may use the expressions,

Rµλ = ∂ν∂(µhλ)ν −
1

2
2hλµ −

1

2
∂µ∂λh , (i)

R = ∂ν∂λhνλ −2h , (ii)

for the linearized Ricci tensor and scalar. As in exercise 1.2 the important
fact to use is the equality of mixed partial derivatives.
•
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1.4 Plane wave solutions

Let us work in vacuum and make a plane wave ansatz

hµν = <
[
eµνe

ikλx
λ]
. (1.1)

When computing we will just take the real part at the end. The matrix eµν is constant
in space and time. It is called the polarization tensor. The vector kµ is called the wave
vector. Plugging both this ansatz into the Lorenz-gauge Einstein equations we obtain,

kµkµ[ Nonvanishing Stuff ] = 0, (1.2)

so that the wave-vector is null kµkµ = 0. Physically this means that the solutions all travel
at light-speed, which is not surprising since the field equations have been reduced to the
wave equation. Not all of these traveling solutions represent physical waves however, as we
must still impose the Lorenz-gauge. Substituting our ansatz into (1.5) we obtain,

kνeµν =
1

2
kµe

ν
ν , (1.3)

as expected restricting four of the ten components. Suppose now that the wave is prop-
agating in the z direction, then kµ = (k, 0, 0, k). In TT gauge eµµ = 0, so it follows
that eµνk

ν = 0. In TT gauge we also have e0j = 0 and hence e0µ = e3µ = 0. The
polarization tensor can thus be written,

eµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 . (1.4)

The polarization tensor is then a sum over two independent matrices, one associated with
the constant h+, the other with h×, these are the two gravitational wave polarization
states. This will be discussed in more detail in the following lecture.

1.5 The generation of gravitational waves

We have seen that in Lorenz gauge the linearized Einstein equations with sources are,

2h̄µν = −16πG

c4
Tµν , (1.5)

∂ν h̄µν = 0 . (1.6)
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Working in complete generality by assuming slowly moving, weak, weakly self-gravitating,
isolated sources, and evaluating the solution far from the source, the TT part of the metric
perturbation can be written as,

hTT
kl ≈

2G

c4r
⊥ijkl (n) Ïij(t− r/c) . (1.7)

This is the famous quadrupole formula. It determines the gravitational wave emission from
the traceless mass quadrupole,

Iij(t) =

∫
R3

ρ(t, x′i)
(
x′ix
′
j −

1

3
δijr

′2)d~x′ . (1.8)

The isolated system is assumed to be located near the origin. The radial scalar function is
defined in the obvious way as r2 = x2 + y2 + z2. The vector ni is the unit spatial vector in
the direction of propagation of the gravitational wave. Since our observer is assumed to lie
a large distance from the source, we can set ni = xi/r. Finally the TT projection operator
is,

⊥ijkl (n) = qi(kq
j
l) −

1

2
qkl q

ij , (1.9)

qij = δij − ninj . (1.10)

Here we raise and lower indices with the kronecker delta δij , which corresponds to the
spatial part of the background metric. The derivation of the quadrupole formula starts with
the Green’s function form of the solution to the wave equation. The resulting expression
is then manipulated using the simplifying assumptions stated above.

Box 1.1: Gravitational waves from a circular Newtonian binary system

Let us assume that our matter source consists of a binary system consisting of
two point particles of equal mass traveling on Newtonian circular orbits in the
xy plane, and compute the TT part of the metric perturbation for an observer on
the positive z-axis. Those of you who have studied GR may note that this exercise
is rather artificial, because the point particles should follow geodesics of flat-space,
and should hence not travel on a circular orbit. This shortcoming can be fixed
within the Post-Newtonian approximation. This example nevertheless serves as an
important first computation.

The positions of the two masses can then be written,

xi1(t) = R(cos(ωt), sin(ωt), 0) , xi2(t) = R(− cos(ωt),− sin(ωt), 0) . (i)
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The radius of the orbit R is a constant that can be computed from Kepler’s third
law as R3 = GM/ω2 with the total mass of the system M .

The mass-density for this system is given by,

ρ =
1

2
Mδ(x− x1, y − y1, z) +

1

2
Mδ(x− x2, y − y2, z) , (ii)

with δ here denoting the three-dimensional Dirac delta function. Using some
trigonometric identities the traceless mass quadrupole can then be computed as,

Iij =
1

8
MR2

 cos(2ωt) + 1
3 sin(ωt) 0

sin(2ωt) − cos(2ωt) + 1
3 0

0 0 −2
3

 . (iii)

The TT projection operator ⊥ijkl (n) is easily constructed using the fact that for
our observer ni = (0, 0, 1), so that,

qij =

 1 0 0
0 1 0
0 0 0

 . (iv)

In fact however, looking at the form of the traceless mass quadrupole we see that
in this particular case we need not apply the TT projection, since the second
derivative of Iij will already be transverse to z and traceless in the xy-plane already.
Again using Kepler’s third law and putting this all together we find that the TT
metric perturbation is,

hTTkl = −GM
c4r

(GMω)2/3

 cos(2ωt) sin(2ωt) 0
sin(2ωt) − cos(2ωt) 0

0 0 0

 . (v)

The important point to realize here is that the gravitational wave frequency is
twice the orbital frequency. This is a reflection of the fact that GR is a spin-2
theory.

Exercise 1.4: Revisiting the Newtonian binary
Carefully reproduce the calculation presented in Box 1.1, checking all of the
factors throughout. What does the TT metric perturbation look like for
observers lying on the x-axis?
•
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1.6 Energy loss via gravitational waves

It is not trivial to establish, but nevertheless true that gravitational waves carry energy.
The difficulty here stems from the fact that the large gauge freedom of even the linearized
field equations makes it hard to untangle that which is physical from that which is not.
There is however a notion of gravitational wave stress-energy due to Isaacson, who defines,

Tµν =
c4

32πG

〈
∂µh

TT
ij ∂νh

ij
TT

〉
. (1.1)

The wedge brackets here denote that an average must be taken over a few gravitational
wavelengths. The idea of this is that whilst a gauge transformation can eradicate a physical
wave at a point, it can not do so over an extended region.

The energy radiated in gravitational waves (the GW luminosity) is determined by
integrating the flux of energy momentum over a sphere of large radius,

LGW =
dEGW

dt
= −

∫
dATGW

0j nj =

∫
dATGW

00 . (1.2)

In the quadrupole approximation this becomes,

LGW =
G

5c5
〈...
I ij

...
I ij
〉
. (1.3)

So the system of the worked example in Box 1.1 above should slowly lose energy. The
standard picture is that this emission causes the binary orbits to contract so that the ob-
jects eventually merge! Throughout the inspiral the approximations that we have used to
describe the physics here gradually breakdown, and must be replaced with more sophisti-
cated methods, such as the Post-Newtonian approximation mentioned above, and close to
the time of merger full numerical relativity.



Chapter 2

Experiment

The first part of this course introduced gravitational waves (GWs) as weak perturbations
in the gravitational field propagating through spacetime at the speed of light. In order to
detect GWs we must build some kind of instrument which will interact with a passing GW.
(For example, an antenna can be used the detect radio waves because the negatively charged
electrons in the wire interact with the oscillating electric field in a passing electromagnetic
wave.) The purpose of this second part of this course is to describe, at a very idealised
level, how GWs interact with 2 very different types of instrument: resonant bars, and
interferometers. To begin with, we will consider an idealised GW detector built from a
number of non-interacting, freely falling test particles. Therefore, our starting point will
be the equation of motion for a test particle in general relativity.

2.1 The Geodesic Equation

In general relativity a freely falling test particle moving in a curved background spacetime
follows a timelike geodesic in the spacetime metric, gµν(x). Using a system of coordinates
xµ, the worldline of a test particle is the curve xµ(λ) [see figure (2.1)]. The parameter λ
labels points along the curve and is otherwise completely arbitrary; we are free to choose
any convenient parameterisation. For two nearby points on the curve, xµ(λ) and xµ(λ+dλ),
the distance interval between them is calculated using the metric;

ds2 = gµν(x)
dxµ

dλ

dxν

dλ
dλ2 . (2.1)

We will assume that the curve is timelike, meaning ds2 < 0. (Remember, we are using the
Minkowski metric sign convention ηµν = diag[−,+,+,+].) The proper time interval along
the worldline is defined as

dτ2 =
−ds2

c2
. (2.2)

12
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The proper time is the time that would be measured by a clock moving along the curve
xµ(λ). Because ds2 < 0 the proper time is always increasing along the curve. Therefore,
it is natural to use τ as a parameter along the curve; we write the position of the particle
as a function of its own proper time, xµ(τ). The particle’s four-velocity is defined as
uµ(τ) = dxµ/dτ . Notice, that equation (2.1) implies that the magnitude of the four-
velocity vector is constant along the worldline of the particle;

−c2 = gµν(x)uµ(τ)uν(τ) . (2.3)

Figure 2.1: One possible worldline for a test particle through spacetime linking two fixed
endpoints. The parameter λ labels points on the curve and is otherwise arbitrary; the tick
marks along the curve are intended to indicate successive intervals of λ.

Among all possible curves linking two fixed endpoints, xµ(τA) and xµ(τB), a test particle
will follow the geodesic which extremises the total proper time along the curve. The total
proper time is given by

S
[
xµ(τ)

]
=

∫ τB

τA

dτ =

∫ τB

τA

dτ

c

√
−gµν(x)uµ(τ)uν(τ) . (2.4)

This may remind you of the principle of least action from classical mechanics. The calculus
of variations can be used to find the equation that must be satisfied by the curve (see box
2.1) and the resultant geodesic equations are

d2xµ

dτ2
+ Γµνρ(x)

dxν

dτ

dxρ

dτ
= 0 , (2.5)

or
duµ

dτ
+ Γµνρ(x)uµ uν = 0 , (2.6)
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where the following quantities (know as the connection coefficients, or sometimes as the
Christoffel symbols) have been defined,

Γµνρ(x) =
1

2
gµα(x)

[
∂νgαρ(x) + ∂ρgαν(x)− ∂αgµν(x)

]
. (2.7)

Equations (2.5) or (2.6) are the equations of motion for a test particle in general relativity.

Box 2.1: The geodesic equation from calculus of variations

The integrand, or Lagrangian, of the functional in equation (2.4) is given by

L
(
xµ, uµ

)
=
√
−gµν(x)uµ(τ)uν(τ) . (i)

The Euler-Lagrange equations are

d

dτ

( ∂L
∂uµ

)
=

∂L
∂xµ

. (ii)

Evaluating the partial derivatives gives

d

dτ

(
gµν(x)uν(τ)√

−gαβ(x)uα(τ)uβ(τ)

)
=

1
2∂µgγδ(x)uγ(τ)uδ(τ)√
−gαβ(x)uα(τ)uβ(τ)

. (iii)

Using the result in equation (2.3) simplifies the denominator of this equation.
Evaluating the total derivative with respect to τ gives

gµν(x)
duν

dτ
+ ∂αgµβ(x)uα(τ)uβ(τ) =

1

2
∂µgαβ(x)uα(τ)uβ(τ) , (iv)

gµν(x)
duν

dτ
+

1

2

[
∂αgµβ(x) + ∂βgµα(x)− ∂µgαβ(x)

]
uα(τ)uβ(τ) = 0 . (v)

In the last step dummy indices have been relabelled. Multiplying through by the
inverse of gµν(x) gives the result in equation (2.5).

The geodesics equations look a bit messy when written in this form. If you are
familiar with the concept of a covariant derivative then they can be written in the
more elegant form,

uα∇αuµ = 0 . (vi)
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2.2 The Geodesic Deviation Equation

A single freely falling test particle does not feel the effects of gravitational acceleration
(a consequence of the equivalence principle). Therefore, a single particle cannot possibly
function as a GW detector. A GW detector must consist of at least two freely falling
particles, or an extended object of finite size. Therefore, our next task will be to obtain
the equation governing how the separation of two freely falling particles changes with time.

Consider the first test particle, this follows a geodesic xµ(τ) which satisfies the geodesics
equation in equation (2.5). Now consider a second, nearby test particle which follows a
different geodesic xµ(τ)+ξµ(τ) which must also satisfy a version of the geodesic equations.
Both geodesics are parameterised by their own proper times and the quantity ξµ(τ) joins
points with equal values of τ . The geodesic equations for the second particle are

d2

dτ2
(
xµ + ξµ

)
+ Γµνρ(x+ ξ)

d

dτ

(
xµ + ξµ

) d

dτ

(
xν + ξν

)
= 0 . (2.8)

Since we are dealing with two geodesics that are nearby we can assume that ξµ(τ) is small1.
Therefore, we can Taylor expand Γ(x+ ξ) = Γ(x+ ξ) + ξα∂αΓ(x+ ξ) +O(ξ2). Subtract-
ing equation (2.5) from (2.8) gives the equation of geodesic deviation;

d2

dτ2
ξµ + 2uνξρΓµνρ(x) + ξαuνuρ∂αΓµνρ(x) = 0 . (2.9)

The setup is illustrated in figure (2.2) and the equation is discussed further in box 2.2.

Box 2.2: Curvature and geodesic deviation

Again, the way we have written the equation of geodesic deviation appears a
little messy. If you are familiar with the concepts of covariant differentiation and
Riemannian curvature then they can be written in the more elegant form,

uα∇α
(
uβ∇βξµ

)
= Rµαβγu

αuβξγ . (i)

This is an important result in general relativity because it shows mathematically
that it is the spacetime curvature which is responsible for the tidal gravitational
forces which cause the divergences or convergences in the trajectories of nearby
particles.

1Specifically, we assume that the separation of the particles is much smaller than the typical length scale
over which the gravitational field changes.
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Figure 2.2: The deviation of two geodesics in spacetime. The vector ξµ(τ) joins points on
the two geodesics with equal values of the proper time parameter.

2.3 The Effect of GWs on Freely Falling Particles

The first part of this course described weak gravitational fields as small perturbations away
from flat Minkowski space. Working in (nearly) Cartesian coordinates xµ = {ct, x, y, z}
the metric is given by gµν(x) = ηµν + hµν(x). We also saw that GWs admit an especially
simple description in the transverse-traceless (TT) gauge. Recall that in the TT gauge a
linearly polarised, plane-fronted, monochromatic GW travelling in the z-direction can be
written as a combination of two linearly independent polarisation states:

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , and hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 exp
[
i(ωt− kz)

]
. (2.10)

The GW angular frequency is ω and the GW travels at the speed of light, so k = ω/c.
The constants h+ and h× are the amplitudes of the two GW polarisation states and are
assumed to be small (h+,× � 1). (The metric components are all real numbers; in equation
(2.10) and henceforth it is to be understood that the real part is taken implicitly.) With
this form of the metric the distance element becomes

ds2 = gµν(x)dxµdxν

= −c2dt2 + dz2 +
{

1 + h+ exp
[
i(ωt− kz)

]}
dx2

+
{

1− h+ exp
[
i(ωt− kz)

]}
dy2 + 2h× exp

[
i(ωt− kz)

]
dxdy . (2.11)
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Given this metric, we can now solve the geodesics equations to see how test particles
will move in this metric. The 4 spacetime coordinates of the worldline of a particle are

xµ(τ) =
{
ct(τ), x(τ), y(τ), z(τ)

}
. (2.12)

The geodesics equations are four, second order differential equations; therefore, we need to
specify the initial spacetime position (4 constraints) and the initial four-velocity (4 + 4 = 8
constraints) to uniquely solve these equations. We will choose as our initial conditions a
particle at rest (i.e. not moving in space) at an arbitrary point in space.

x(0) = x0 , y(0) = y0 , z(0) = z0 ,

dx

dτ

∣∣∣
τ=0

= 0 ,
dy

dτ

∣∣∣
τ=0

= 0 ,
dz

dτ

∣∣∣
τ=0

= 0 . (2.13)

We will also initialise our time coordinate such that t(0) = 0 But given these choices we
are now forced to have our test particle “moving” forwards in time, dt/dτ

∣∣
τ=0

= c, in order
to satisfy the constraint in equation (2.3).

Having chosen the particle’s position and velocity the geodesic equations allow us to
calculate the particle acceleration. The µ=1, 2, 3 components of equation (2.5) give

d2x

dτ2

∣∣∣
τ=0

=
[
Γxtt(x)

]
τ=0

, (2.14)

d2y

dτ2

∣∣∣
τ=0

=
[
Γytt(x)

]
τ=0

, (2.15)

d2z

dτ2

∣∣∣
τ=0

=
[
Γztt(x)

]
τ=0

. (2.16)

Therefore, we need to compute the Γxtt, Γytt, and Γztt connection coefficients. This can
be done using the definition in equation (2.7) and the metric in equation (2.10). It is
a straightford exercise in differentiation to compute these connection coefficients, Taylor
expand them to linear order in h+ and h×, and finally to show that

Γxtt(x) = Γytt(x) = Γztt(x) = 0 . (2.17)

Just these three components are enough to show that all the spatial components of the
acceleration in equation (2.14) are zero. Freely falling particles that start at rest in our
coordinates remain at rest. The worldline of our particle must therefore be

t(τ) = τ , x(τ) = x0 , y(τ) = y0 , z(τ) = z0 . (2.18)

Don’t misunderstand this result as implying that GWs have no effect on free parti-
cles. All this result is saying is that the particles remain at rest in our chosen system of
coordinates. To understand the true effect of the GW we need to calculate a geometrical
quantity (i.e. a scalar) with a value independent of the coordinates used to describe it.
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One way to do this is to place many test particles in a ring with around an observer
centred at the origin. As we have seen, the spatial coordinates of the particles and the
observer don’t change with time. We choose the coordinates of the particles such that

z0 = 0 , x20 + y20 = R2
0 . (2.19)

Now compute the proper distance from the origin to the ring of test particles. Although
the ring appears to be circular in our coordinate, this distance will nevertheless depend on
time and also on which direction we choose. It is natural to introduce 2 dimensional plane
polar coordinates (r, φ) to describe the plane containing the ring;

x0 = r cosφ , y0 = r sinφ . (2.20)

Using equation (2.11), the proper distance to the ring is given by (see box 2.3)

R(φ, t)/R0 = 1 +
h+
2

exp(iωt)(cos2 φ− sin2 φ) + h× exp(iωt) cosφ sinφ . (2.21)

The effect of the GW on the proper distance to the ring is illustrated in figure (2.3).

Box 2.3: The proper distance

The proper distance from the origin to the ring of test particles is obtained by
integrating the distance element in equation (2.11),

R(φ, t) =

∫ Ring

Origin
ds. (i)

Integrating along a curve with dt = dz = dφ = 0 gives

R(φ, t) =

∫ R0

0
dr

({
1 + h+ exp

[
i(ωt− kz)

]}(dx

dr

)2

+ (ii)

{
1− h+ exp

[
i(ωt− kz)

]}(dy

dr

)2

+ 2h× exp
[
i(ωt− kz)

]dx
dr

dy

dr

)1/2

.

Using dx/dr = cosφ and dy/dr = sinφ from equation (2.20), and expanding to
linear order in the GW amplitude (h+ and h×) we obtain equation (2.21).

Exercise 2.1:
Calculate how the proper area inside the ring changes over time.
•
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Figure 2.3: The effect of a GW on the proper distance from the origin to an initially
circular ring of freely falling test particles. Remember, in our coordinates the particles are
not moving, what is plotted here is the proper distance R(φ, t) in equation (2.21). The two
rows show the effects of the two linearly independent GW polarisations: the top row shows
a plus polarised GW with h+ 6= 0 and h× = 0, and the bottom row shows a cross polarised
GW with h× 6= 0 and h+ = 0. Time increases from left to right and five snapshots of the
proper distances are shown at equally spaced intervals of the GW phase ψ = ωt.

2.3.1 Laser Interferometry

One practical way of measuring this effect is to use light. If the ring of test particles are
replaced by reflecting mirrors, and the observer at the origin emits a circularly symmetric
pulse of light at time t = 0 then the light will bounce back to the origin at some later time.
In the absence of any GWs (i.e. h+ = h× = 0) then all of the light will return to the origin
after a time R0/c (this is the proper time as measured by a clock carried by the observer
at the origin). If instead there is, say, a plus polarised GW passing through the experiment
(i.e. h× = 0 but h+ 6= 0) then the light emitted in different directions will return after
different amounts of time. Measuring these time differences is one way to detect GWs.

In practice, a experimental setup similar to that described above can be achieved using
laser interferometry. Instead of a ring of test particles, two mirrors are placed at the end of
kilometer scale pipes. The mirrors are suspended from the ceiling; they are not really freely
falling test particles, but they do respond as such to motion in the horizontal directions on
timescales less than the suspension oscillation period. Instead a pulse of light, a continuous
laser is split and directed to both mirrors. The light is reflected back to the centre and
recombined onto a photodetector where the two beams interfere coherently. Extremely
small changes in distance, e.g. due to a passing GW, can be measured by looking at the
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changing interference pattern. Several collaborations around the world have constructed
laser interferometers with the aim of observing GWs. Currently, the most sensitive of these
are the two LIGO observatories [see figure (2.4)].

Figure 2.4: There are two LIGO detectors, their locations within the USA are shown in
the (a) inset. The two 4 km detectors are built to the same basic design and have achieved
unprecedented strain sensitivities; the (b) inset shows that at frequencies f ≈ 100 Hz the
detectors can measure strains (strain ≡ length change / length) of less than one part in 1023.
The main figure shows a simplified diagram of one of the advanced LIGO interferometers.
Figure reproduced from B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration) Physical Review Letters 116, 061102 - Published 11 February 2016.

2.4 The Effect of GWs on Connected Particles

The coordinates used above proved extremely convenient for describing freely falling par-
ticles. But many situations involve particles which interact in various complicated ways.
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For example, rigid bodies consist of a collection of particles joined together by rigid struts.
Let us consider a simpler system of interacting particles; two point particles of mass

m connected by a massless spring with spring constant k, damping constant ν, and an
unstretched length l0 [see figure (2.5)].

Figure 2.5: Two particles with mass m are joined by a spring with stiffness constant k,
damping constant ν, and an natural length l0.

For simplicity, we will align the system with the x-axis so that we only have to deal
with motion in one dimension (i.e. we will always assume y = z = 0). Let x1(t) and x2(t)
denote the position of the two particles along the x-axis as a function of the coordinate
time. In flat space (i.e. no GWs; the metric is simply gµν(x) = ηµν) the stretched length
of the spring is given by

l(t) =

∫ x2(t)

x1(t)
dx = x2(t)− x1(t) . (2.1)

We will assume that all the motions of the system are much smaller than the speed of light
so that we can neglect any special relativistic effects. The Newtonian equations of motions
for the two particle system are obtained by considering the spring force and the damping
force acting on the two masses:

m
d2

dt2
[
x1(t)

]
= −k

[
l0 − l(t)

]
− ν d

dt

[
l0 − l(t)

]
, (2.2)

m
d2

dt2
[
x2(t)

]
= −k

[
l(t)− l0

]
− ν d

dt

[
l(t)− l0

]
. (2.3)

This is a coupled system of differential equations. It can be simplified by defining a new
variable corresponding to the displacement ξ = l(t)− l0. If we also define ω2

0 = 2k/m and
γ = ν/m, then we obtain the familiar equation for a damped harmonic oscillator,

d2ξ

dt2
+ 2γ

dξ

dt
+ ω2

0ξ = 0 . (2.4)

Now we consider what happens when a GW comes past. The Newtonian equations
of motion derived above are still valid (assuming that GW is weak and that all of the
velocities are non relativistic). The only important difference is now the spring will exert
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a force proportional to the change in its proper length, not just its coordinate length. Just
as in box 2.3, the proper length is given by an integral along the spring of the metric line
interval. So we must replace the length in equation (2.1) with

l(t) =

∫ Particle 2

Particle 1
ds . (2.5)

Because we are integrating along the spring we can use the distance line element in equation
(2.11) with dt = dy = dz = 0;

l(t) =

∫ x2(t)

x1(t)
dx
√

1 + h+ exp(iωt) =
[
x2(t)− x1(t)

] [
1 +

1

2
h+ exp(iωt) +O(h2+)

]
(2.6)

= x2(t)− x1(t) +
l0
2
h+ exp(iωt) +O(h2+) . (2.7)

In the last step we have used the fact that the factor
[
x2(t) − x1(t)

]
multiplying h+ can

be replaced by l0 at the required order.

Exercise 2.2:
By substituting the proper length of the spring in equation (2.7) into the

system of equations (2.2) and (2.3) show that the displacement ξ(t) = l(t)− l0
now satisfies

d2ξ

dt2
+ 2γ

dξ

dt
+ ω2

0ξ =
−l0ω2

2
h+ exp(iωt) . (i)

This is the equation of motion for a damped, driven oscillator.
•

The driving force for the oscillator equation derived in exercise 2.2 is provided by the
GW. Therefore, we can think of the GW as a acting on our system just like a Newtonian
force; here, the magnitude of the force is F = ml0ω

2h+ exp(iωt)/2.

In this example we choose to use a spring of natural length l0 aligned along the x-axis.
This was an arbitrary choice, and we could have chosen to put one of the masses at the
origin and the second mass anywhere in the x− y plane. If we did this then the GW force
in the spring some general point in the plane, ξi = (x, y, z = 0), would be given by

Fi =
m

2

d2hij
dt2

ξj = −1

2
mω2

yh× + xh+
xh× − yh+

0

 exp(iωt) , (2.1)
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where hij(x) is the TT gauge metric perturbation. The spatial pattern of this force is
illustrated in figure (2.6). Figures (2.3) and (2.6) are the two common ways of visualising
the effects of a GW. There is another way to derive the result in equation (2.1) which uses
the geodesic deviation equation. This helps to make it clear that is the tidal gravitational
forces, described by the Reimann tensor, which are responsible for driving the oscillator.

Figure 2.6: The pattern of forces, Fi in equation (2.1), in the xy plane from a GW in
the detector frame. The two panels show the effects of the two linearly independent GW
polarisations: plus (+, left) and cross (×, right). There shading of the arrows indicates
the magnitude of the force, which increases further from the origin.

2.4.1 Resonant Bar Detectors

We have analysed the response of two masses connected by a spring to an incident GW. This
is a simple model for a resonant bar detector These instruments are historically important
because they were the first significant experimental effort to detect GWs. These early
efforts, spearheaded by Joseph Weber [see figure (2.7)], consisted of ∼ 3 m cylindrical
aluminium bars. As we have seen, when a GW passes over the bar it exerts a force
between the two ends which acts to periodically stretch and compress the bar, exciting
small mechanical oscillations along its length. A mechanical transducer attached to the
end of the bar can be tuned to amplify small oscillations near a particular frequency and
a piezoelectric crystal turns these mechanical oscillations into an electrical signal.

A small number of resonant detectors descended from Weber’s bars continue to oper-
ate, however they have largely been superseded by the development of laser interferometers.
However, many of the techniques pioneered by during these early efforts continue to prove
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useful. For example, Weber realised that a single detector would never be enough, regard-
less of how carefully it was constructed. Even if that single detector recorded a large signal
it would be impossible to say with any certainty whether it was due to a GW or some
nearby environmental effect. Therefore, Weber positioned a network of his resonant bars
across the United States and looked for events that occured (almost) coincidently across
the network. The same technique is used currently by the LIGO and Virgo detectors.

Figure 2.7: Joseph Weber working on a resonant bar detector at the University
of Maryland c. 1965. Image reproduced from https://umdrightnow.umd.edu/news/

gravitational-wave-detection-validates-einstein-early-work-umd-physicists.

2.5 Discussion

Although gravitational wave science has really only just begun it already has a long history.
The existence of GWs was first predicted by Einstein c. 1915. There was initially some
confusion over the whether these waves had any real physical effects. This confusion was
due in a large part to the issues of gauge freedom discussed in the first part of this course,
and it wasn’t completely resolved until the 1960s.

The first serious experimental effort to detect gravitational waves was begun in the
1960s by Joseph Weber and used a network of resonant bar detectors. We have seen in
the second part of this course how a GW exerts a force and excites mechanical oscillations
in such an instrument. However, the first evidence for GWs came from another, indirect
source. In the 1970s radio observations of the binary pulsar PSR B1913+16 by Hulse

https://umdrightnow.umd.edu/news/gravitational-wave-detection-validates-einstein-early-work-umd-physicists
https://umdrightnow.umd.edu/news/gravitational-wave-detection-validates-einstein-early-work-umd-physicists
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and Taylor showed that the system was losing energy at exactly the rate predicted by the
quadrupole formula. Hulse and Taylor were awarded the Nobel prize for physics in 1993;
the first Nobel prize awarded in the field of gravitational wave astronomy.

We have also seen in the second part of this course how laser interferometry can be
used to measure small changes in the distance between test particles. The idea of using
laser interferometry to detect gravitational waves was developed during the 1970s and 80s
and construction began on the two LIGO detectors in the mid 1990s. After an uneventful
early observation period in the mid 2000s, these efforts were rewarded with the first direct
detection of gravitational waves in September 2015. These gravitational waves were pro-
duced during a collision of two distant black holes, each around 30 times the mass of our
sun, which occurred almost 109 years ago [see figure (2.8)]. Such a system was described,
to a first approximation, in the first part of the course. Three pioneers in the development
of the field received the 2017 Nobel prize in physics; the second Nobel prize awarded in the
field.

In addition to LIGO, there is a growing number of other ground-based laser interfer-
ometers hunting for gravitational waves: Virgo (in Italy), Kagra (in Japan), LIGO-India.
There are also advanced plans for ESA to launch a space-based gravitational wave inter-
ferometer called LISA in the early 2030s.

Finally, there are other possibilities, besides resonant detectors and interferometers, for
detecting gravitational waves that have not been discussed in this course. Such methods
include the use radio telescopes to time networks of pulsars throughout the galaxy to look
for small changes in the arrival timing of the radio pulses. These pulsar timing arrays
(PTAs) will be able to detect very low frequency GWs generated by extremely heavy black
holes.



26 CHAPTER 2. EXPERIMENT

Figure 2.8: The first observation of GWs from the binary black hole system GW150914.
The two columns show data from the two LIGO detectors in Washington (left) and
Louisiana (right). The first row shows the measured GW strain (bandpass filtered be-
tween 35 Hz and 350 Hz). The second row shows results from a theoretical model of the
signal (the same bandpass filter has been applied). The third row shows the residuals
between the measured data and the theoretical model. Finally, the fourth row shows a
time frequency “spectrogram” of the measured data showing how the frequency rapidly in-
creases from ∼ 30 Hz to ∼ 150 Hz in a manner called a “chirp”. Figure reproduced from B.
P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) Physical Review
Letters 116, 061102 - Published 11 February 2016. This paper announced the first detec-
tion of GWs. It is a beautifully written paper, which largely accessible to non-specialists,
and it represents a milestone in the history of science. The paper is freely available online
and I strongly encourage you to read it.
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