Acceleration in Special Relativity and Mach's Principle

Edgar Gasperín

CENTRA
Instituto Superior Técnico
Universidad de Lisboa

11th School on Astrophysics and Gravitation

Equivalence principle

Weak Equivalence Principle: all particles fall at the same rate in a gravitational field, independent of their mass and composition

The equivalence principle: In a freely falling (non-rotating) laboratory occupying a small region of spacetime, the laws of physics are those of special relativity.

Special Relativity

The equivalence principle: In a freely falling (non-rotating) laboratory occupying a small region of spacetime, the laws of physics are those of special relativity.

Special Relativity = Flat Lorentzian Geometry!
Objects moving in the absence of gravitational field

General Relativity = Curved Lorentzian Geometry!
Objects moving in the presence of gravitational field

Flat space (Riemannian) = Euclidean geometry

Pato Donald no país da MateMágica!

$$
d z^{2}=d x^{2}+d y^{2}
$$

Flat space (Lorentzian) = Minkowski space-time

Metric $c^{2} d^{2}=-c^{2} d^{2}+d x^{2}$

- Timelike vectors
- Spacelike vectors
- Null or Lightlike vectors

Galilean view vs Einstein view of Past and Future

Image: General Relativity: An introduction for physicists. Hobson, Efstathiou \& Lasenby

Simultaneity in Special Relativity

One can "read" the time dilation effect from the diagram without doing any computation

Curves of constant acceleration

Newtonian

$$
\frac{d x}{d t}=a t
$$

Curves of constant acceleration

Definitions

$$
\begin{aligned}
& \boldsymbol{x}=(t(\lambda), x(\lambda)) \\
& \dot{\boldsymbol{x}}=(d t / d \lambda, d x / d \lambda)
\end{aligned}
$$

$$
c d \tau=\sqrt{-\|\dot{\boldsymbol{x}}\|_{M i n k}^{2}}
$$

$$
\boldsymbol{u}=\frac{1}{c}\left(\frac{d t}{d \tau}, \frac{d x}{d \tau}\right)
$$

$$
\boldsymbol{a}=\frac{1}{c^{2}}\left(\frac{d^{2} t}{d \tau^{2}}, \frac{d^{2} x}{d \tau^{2}}\right)
$$

Spacetime diagram

Hyperbola in spt

$$
\begin{aligned}
x(\lambda) & =\frac{c^{2}}{a_{p}}\left(\cosh \left[\frac{a_{p}}{c} \lambda\right]-1\right) \\
t(\lambda) & =\frac{c}{a_{p}} \sinh \left[\frac{a_{p}}{c} \lambda\right]
\end{aligned}
$$

Proper time

Proper 4-velocity

Proper 4-acceleration

Worldline

Tangent vector

Curves of constant acceleration

Special Relativity

Hyperbola in spt diagram

$$
\begin{aligned}
& \dot{\boldsymbol{x}}=\left(\cosh \left[\frac{a_{p}}{c} \lambda\right], c \sinh \left[\frac{a_{p}}{c} \lambda\right]\right) \\
& \|\dot{\boldsymbol{x}}\|_{M i n k}^{2}=-c^{2} \Longrightarrow \tau=\lambda \\
& \frac{d x / d \lambda}{d t / d \lambda}=\frac{d x}{d t}=c \tanh \left[\frac{a_{p}}{c} \lambda\right] \\
& \boldsymbol{u}=\left(\frac{1}{c} \cosh \left[\frac{a_{p}}{c} \tau\right], \sinh \left[\frac{a_{p}}{c} \tau\right]\right) \\
& \boldsymbol{a}=\frac{1}{c}\left(\frac{a_{p}}{c^{2}} \sinh \left[\frac{a_{p}}{c} \lambda\right], \frac{a_{p}}{c} \cosh \left[\frac{a_{p}}{c} \lambda\right]\right)
\end{aligned}
$$

Hyperbolic worldline in spacetime
is that of constant proper 4-acceleration!

$$
\|\boldsymbol{a}\|_{\text {Mink }}^{2}=\frac{a_{p}^{2}}{c^{4}},
$$

Twin Paradox

Tom and Bob are 21 years old

Tom travels at a speed
0.96 c to a distant star. Instantaneously upon arrival, returns to earth at speed 0.96 c.

Tom is 35 years old

Bob is 71 years old!

Twin Paradox

$$
x(t)= \begin{cases}v t & \text { if } t \in[0, T / 2] \\ v(T-t) & \text { if } t \in[T / 2, T]\end{cases}
$$

$x(t)= \begin{cases}v t & \text { if } t \in[0, T / 2] \\ v(T-t) & \text { if } t \in[T / 2, T]\end{cases}$
Tom's worldline

$$
\|\dot{\boldsymbol{x}}\|_{\text {Mink }}^{2}=-c^{2} d t+(\pm v d t)^{2} \Longrightarrow c d \tau=\sqrt{c^{2}-v^{2}} d t
$$

$$
\begin{aligned}
& \frac{\Delta \tau}{\Delta t}=\sqrt{1-\frac{v^{2}}{c^{2}}} \\
& \frac{T^{\prime}}{T}=\sqrt{1-\frac{v^{2}}{c^{2}}} \leq 1
\end{aligned}
$$

Triangle inequality (Euclidean space)

Reversed triangle inequality (Minkowski space)

Twin paradox as the reversed triangle inequality

$c>a+b$

David Bowie as Major Tom

For each 6 months Major Tom spends in the ISS, major Tom is 0.007 seconds younger than Bob.

A realistic worldline: Langevin's travel

Image taken from Erik Gourgoulhon's book Special Relativity in General Frames

$$
\begin{array}{ll}
\text { for } t \in\left[0, \frac{T}{4}\right]: & x(t)=\frac{c T}{\alpha}\left[\sqrt{1+\alpha^{2}(t / T)^{2}}-1\right] \\
\text { for } t \in\left[\frac{T}{4}, \frac{3 T}{4}\right]: & x(t)=\frac{c T}{\alpha}\left[-\sqrt{1+\alpha^{2}(t / T-1 / 2)^{2}}+2 \sqrt{1+\frac{\alpha^{2}}{16}}-1\right]
\end{array}
$$

$$
\begin{equation*}
\text { for } t \in\left[\frac{3 T}{4}, T\right]: \quad x(t)=\frac{c T}{\alpha}\left[\sqrt{1+\alpha^{2}(t / T-1)^{2}}-1\right], \tag{2.20b}
\end{equation*}
$$

Eq. 2.20a rewritten

$$
\left(\alpha \frac{x}{c T}+1\right)^{2}-\left(\alpha \frac{t}{T}\right)^{2}=1
$$

2.20a-b-c: three hyperbolas cut and joint

A realistic worldline: Langevin's travel

Image taken from Erik Gourgoulhon's book Special Relativity in General Frames

Compute worldline's tangent

$$
\mathrm{d} x=(-1)^{k} \frac{\alpha(t / T-k / 2)}{\sqrt{1+\alpha^{2}(t / T-k / 2)^{2}}} c \mathrm{~d} t
$$

Compute proper time

$$
c d \tau=\sqrt{-\left\|\dot{\boldsymbol{x}}^{2}\right\|_{M i n k}}
$$

$$
\mathrm{k}=1
$$

$$
c d \tau=\frac{d t}{\sqrt{1+\alpha^{2}(t / T-k / 2)^{2}}}
$$

Integrate this ODE to get

$$
\tau=\tau(t)
$$

and evaluate at initial and final events

$$
\frac{T^{\prime}}{T}=\frac{\tau(B)-\tau(A)}{t(B)-t(A)}=\frac{4}{\alpha} \operatorname{arcsinh}\left[\frac{\alpha}{4}\right] \leq 1
$$

Mach's principle and rotation: Absolute or Relative?

Taken from The Forgotten Mystery of Inertia. American Scientiest.
Rotation is absolute!

Interestellar's docking scene.
Rotation is Relative!
Rotation is Relative!

Mach's principle and Einstein's road to General Relativity

Mach's principle:

inertial forces experienced by a body in nonuniform motion are determined by the quantity and distribution of matter in the universe.

General Relativity

"Matter tells space how to bend, space tells matter how to move"

Geodesic equation
$\nabla_{\dot{\boldsymbol{x}}} \dot{\boldsymbol{x}}=0$
$\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}=0$

