Acceleration in Special Relativity and Mach's Principle

Edgar Gasperín

CENTRA Instituto Superior Técnico Universidad de Lisboa

11th School on Astrophysics and Gravitation

Equivalence principle

Weak Equivalence Principle: all particles fall at the same rate in a gravitational field, independent of their mass and composition

The **equivalence principle**: In a freely falling (non-rotating) laboratory occupying a small region of spacetime, the laws of physics are those of special relativity.

Special Relativity

The **equivalence principle**: In a freely falling (non-rotating) laboratory occupying a small region of spacetime, the laws of physics are those of special relativity.

Special Relativity = Flat Lorentzian Geometry!

Objects moving in the absence of gravitational field

General Relativity = Curved Lorentzian Geometry!

Objects moving in the presence of gravitational field

Flat space (Riemannian) = Euclidean geometry

Pato Donald no país da MateMágica!

Flat space (Lorentzian) = Minkowski space-time

Metric $c^2 d\tau^2 = -c^2 dt^2 + dx^2$

- Timelike vectors
- Spacelike vectors
- Null or **Ligh**tlike vectors

Galilean view vs Einstein view of Past and Future

ct ► x

Image: General Relativity: An introduction for physicists. Hobson, Efstathiou & Lasenby

Image: General Relativity. B. Schutz

Simultaneity in Special Relativity

One can "read" the time dilation effect from the diagram without doing any computation

Images: General Relativity: An introduction for physicists. Hobson, Efstathiou & Lasenby

Curves of constant acceleration

Newtonian

For simplicity take $x_0 = v_0 = 0$

Parabola in spt diagram

$$\frac{dx}{dt} = at$$

Curves of constant acceleration

$$x(\lambda) = \frac{c^2}{a_p} \left(\cosh\left[\frac{a_p}{c}\lambda\right] - 1 \right)$$
$$t(\lambda) = \frac{c}{a_p} \sinh\left[\frac{a_p}{c}\lambda\right]$$

Curves of constant acceleration

Special Relativity

Hyperbola in spt diagram

$$\dot{\boldsymbol{x}} = \left(\cosh\left[\frac{a_p}{c}\lambda\right], \ c \sinh\left[\frac{a_p}{c}\lambda\right] \right)$$

$$||\dot{\boldsymbol{x}}||^2_{Mink} = -c^2 \implies \tau = \lambda$$

$$\frac{dx/d\lambda}{dt/d\lambda} = \frac{dx}{dt} = c \tanh\left[\frac{a_p}{c}\lambda\right],$$

$$\boldsymbol{u} = \left(\frac{1}{c} \cosh\left[\frac{a_p}{c}\tau\right], \ \sinh\left[\frac{a_p}{c}\tau\right]\right)$$

$$a = \frac{1}{c} \left(\frac{a_p}{c^2} \sinh \left[\frac{a_p}{c} \lambda \right], \ \frac{a_p}{c} \cosh \left[\frac{a_p}{c} \lambda \right] \right)$$

$$||\boldsymbol{a}||_{Mink}^2 = \frac{a_p^2}{c^4},$$

Hyperbolic worldline in spacetime is that of constant proper 4-acceleration!

Twin Paradox

Tom and Bob are 21 years old

Tom travels at a speed 0.96c to a distant star. Instantaneously upon arrival, returns to earth at speed 0.96c.

Tom is 35 years old

Bob is 71 years old!

Twin Paradox

Т Tom's worldline т'/2 3T/4 T/2 T/4 т'/2

Twin paradox as the reversed triangle inequality

David Bowie as Major Tom

For each 6 months Major Tom spends in the ISS, major Tom is 0.007 seconds younger than Bob.

A realistic worldline: Langevin's travel

Wordline

for
$$t \in \left[0, \frac{T}{4}\right]$$
: $x(t) = \frac{cT}{\alpha} \left[\sqrt{1 + \alpha^2 (t/T)^2} - 1\right]$ (2.20a)

for
$$t \in \left[\frac{T}{4}, \frac{3T}{4}\right]$$
: $x(t) = \frac{cT}{\alpha} \left[-\sqrt{1 + \alpha^2 \left(t/T - 1/2\right)^2} + 2\sqrt{1 + \frac{\alpha^2}{16}} - 1\right]$

(2.20b)

for
$$t \in \left[\frac{3T}{4}, T\right]$$
: $x(t) = \frac{cT}{\alpha} \left[\sqrt{1 + \alpha^2 (t/T - 1)^2} - 1\right],$ (2.20c)

Eq. 2.20a rewritten

$$\left(\alpha \frac{x}{cT} + 1\right)^2 - \left(\alpha \frac{t}{T}\right)^2 = 1,$$

2.20a-b-c: three hyperbolas cut and joint

Image taken from Erik Gourgoulhon's book Special Relativity in General Frames

A realistic worldline: Langevin's travel

Image taken from Erik Gourgoulhon's book Special Relativity in General Frames Compute worldline's tangent

$$dx = (-1)^{k} \frac{\alpha(t/T - k/2)}{\sqrt{1 + \alpha^{2} (t/T - k/2)^{2}}} c dt,$$

Compute proper time

$$cd au = \sqrt{-||\dot{x}^2||_{Mink}}$$

$$c \ d\tau = \frac{dt}{\sqrt{1 + \alpha^2 (t/T - k/2)^2}}$$

Integrate this ODE to get au = au(t)and evaluate at initial and final events

$$\frac{T'}{T} = \frac{\tau(B) - \tau(A)}{t(B) - t(A)} = \frac{4}{\alpha} \operatorname{arcsinh} \left[\frac{\alpha}{4}\right] \le 1$$

Side comment: Physical acceleration in local reference frame

Mach's principle and rotation: Absolute or Relative?

Taken from The Forgotten Mystery of Inertia. American Scientiest.

Rotation is absolute!

Interestellar's docking scene.

Rotation is Relative!

Mach's principle and Einstein's road to General Relativity

Mach's principle:

inertial forces experienced by a body in nonuniform motion are determined by the quantity and distribution of matter in the universe.

?

Connection between geometry and matter?

Taken from The Forgotten Mystery of Inertia by Tony Rothman. American Scientiest.

General Relativity

"Matter tells space how to bend, space tells matter how to move"

Geodesic equation

 $abla_{\dot{\boldsymbol{x}}}\dot{\boldsymbol{x}}=0$

 $\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\beta}}{d\tau} = 0$

Table cloth designed by A.P. Works Gakitz.com

