Eddington-inspired Born-Infeld gravity: Phenomenology of nonlinear gravity-matter coupling
Pani, Paolo, Delsate, Terence and Cardoso, Vitor (2012), "Eddington-inspired Born-Infeld gravity: Phenomenology of nonlinear gravity-matter coupling", PHYSICAL REVIEW D, 85, 8.

Abstract:
Viable corrections to the matter sector of Poisson's equation may result in qualitatively different astrophysical phenomenology, for example, the gravitational collapse and the properties of compact objects can change drastically. We discuss a class of modified nonrelativistic theories and focus on a relativistic completion, Eddington-inspired Born-Infeld gravity. This recently proposed theory is equivalent to General Relativity in vacuum, but its nontrivial coupling to matter prevents singularities in early cosmology and in the nonrelativistic collapse of noninteracting particles. We extend our previous analysis, discussing further developments. We present a full numerical study of spherically symmetric nonrelativistic gravitational collapse of dust. For any positive coupling, the final state of the collapse is a regular pressureless star rather than a singularity. We also argue that there is no Chandrasekhar limit for the mass of a nonrelativistic white dwarf in this theory. Finally, we extend our previous results in the fully relativistic theory by constructing static and slowly rotating compact stars governed by nuclear-physics inspired equations of state. In the relativistic theory, there exists an upper bound on the mass of compact objects, suggesting that black holes can still be formed in the relativistic collapse.


Electronic Paper LinkDownload BibTex