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Abstract

This thesis reports on two distinct investigations: black holes surrounded
by matter are studied in scalar-tensor theories of gravity and dark matter
particle ejections occurring during halo mergers are analysed through various
types of simulations.

In general relativity, stationary asymptotically flat electrovacuum and
regular black holes are described by the Kerr-Newman family of solutions;
this is still valid in scalar-tensor theories of gravity. In this thesis it
is shown that within this class of theory exist two mechanisms which

can render black holes unstable when matter is close-by: the coupling
between the scalar field introduced by the theory and matter induces an
e↵ective mass for the scalar, changing the dynamics of the system. The
square of this e↵ective mass can either be positive or negative according
to the specific theory and to the nature of the existent matter. When the
e↵ective mass squared is negative and the matter density is above a cer-
tain limit, the first mechanism is triggered: the initial general relativity
configuration is not stable and the system ends up in a hairy state, with
the scalar field developing a non-trivial profile. This is a black hole version
of spontaneous scalarization already studied in neutron stars. The sec-
ond instability is associated with superradiance and is present when the
e↵ective mass squared is positive and when the black hole spin exceeds a
certain threshold; the amplitude of the unstable modes of the scalar field
exponentially grows in time at the expense of rotational energy from the
black hole. The second mechanism is also responsible for a resonant e↵ect
in the superradiant scattering of monochromatic scalar waves, with ampli-
fication factors as large as 105 or more, prospecting detectable deviations
from general relativity. The phenomena are first analysed analytically in
a simplified configuration, then, using simple models for the matter profile
around the black hole, a numerical check is done to confirm the emergence
of an instability.

Dark matter halos are built from accretion and merging and are believed
to be the framework of the present large scale structure of the universe.
During merging, some of the kinetic energy has to be disposed in order to
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reach a new equilibrated configuration. Baryonic matter usually radiates
away the energy in excess, dark matter structures relax by expelling some
of their particles and let them carry energy away. A consequence of halo

mergers is indeed the ejection of particles with velocities higher than
the escape velocity, thus allowing the expelled particles to leave forever the
resulting structure. N-body simulations and single-particle smooth-

field simulations are performed in this thesis to demonstrate that this
phenomenon is a mean-field e↵ect. Studying a range of minor mergers, it
is confirmed that between 5 � 15% of the particles from the smaller of the
two merging structures are expelled. It is argued that the rapid changes to
the field potential are responsible for such ejection. These findings provide
an explanation for the high-velocity component dark matter particles which
are observed in cosmological numerical simulations.
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Chapter 1

Introduction

This thesis is composed of two distinct parts: we consider black holes in
scalar-tensor theories of gravity and dark matter halo mergers. While these
two studies notably di↵er one from the other (in subject and in modus
operandi), they are part of a bigger picture, trying to get a glimpse of the
very fundamentals of the universe, as Sir Arthur Eddington put it: some-
thing unknown is doing we don’t know what.

Indeed, while we now have a general picture of the basic constituents
that make up the universe (the Planck mission released new data just few
months ago: see figure 1.1), there is no understanding of the precise nature
of the major components: dark energy, 68.3% and dark matter, 26.8%.
Dark energy is related to the accelerated expansion of the universe, dark
matter has been hypothesised to fill the discrepancies between the mass of
large astronomical objects determined from their gravitational e↵ects and
the mass calculated from the luminous (ordinary) matter they contain.

Since the studies on supernovae IA of about 15 years ago, we know that
the universe is not only expanding (that was an idea that Hubble and more
entertained already in the 1920s) but its expansion is accelerating. What-
ever is the thing or the mechanism that pushes the universe to ever faster
expansion, we call it dark energy. It is sometimes thought as a cosmological
constant: a constant energy density filling space homogeneously (Carroll,
2001). It may also be addressed by gravitational physics, such as an exten-
sion of general relativity. In the latter we find for instance the scalar-tensor
theories that, by making the gravitational coupling varying instead of being
constant, give a rather general parametrization of dark energy. Moreover,
the dynamics of the hypothetical scalar field could account for a unified de-
scription of both dark energy and dark matter (Bertacca et al., 2010) and
scalar-tensor theories are widely studied also because they can be seen as
a low-energy e↵ective version of a more fundamental theory, as string the-
ory, and shed light on quantum gravity. Thus, the interest in scalar-tensor
theories is high and supported by di↵erent physical sectors.
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Figure 1.1: The relative amounts of the di↵erent constituents of the universe.
Image credit: ESA/Planck.

Since in these theories there is one (or more) scalar field mediating the
gravitational interaction, one is naturally led to wonder why the scalar field
has gone undetected in local and solar system experiments conducted so far.
It could be either that the field is massive enough to have just short scale
e↵ects (in which case one could not explain the cosmological issues we are
interested in) or that it experiences screening mechanisms. This controversy
raises the need of considering scalar-tensor theories in strong gravity regime,
i.e. within compact stars and black holes, and this is what we focus on in
the first part of thesis.

We work with black holes: they are simple objects (they are solutions
of the Einstein’s equations in vacuum) and in general relativity are uniquely
described by the Kerr-Newman family of solutions. It has been shown in
(Sotiriou and Faraoni, 2012) that these solutions hold also in scalar-tensor
theories (just assuming stationarity and asymptotic flatness): the field set-
tles to a constant and the metric still satisfies the Einstein’s equations.

If the black holes look the same in general relativity and in scalar tensor
theories, how are we going to distinguish them? How can we probe if the
scalar field is there or not? We make two considerations:

• dynamically the black holes solutions in the two theories are di↵erent:
if we perturb the system, the di↵erences should come up

• generically, whenever matter is present, the scalar field is required to
assume a nontrivial profile.

Taking these into account, we consider black holes in a scalar-tensor
theory placing a matter distribution around them. This configuration has
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astrophysical relevance, since astrophysical black holes can be surrounded
by accretion disks, accretion tori and dark matter halos (Sadeghian et al.,
2013).

In chapter 2 we formally set up the system, develop its mathematics and
show that an e↵ective mass squared term shows up with coupling the scalar
to matter, and it makes possible two di↵erent kind of instabilities: one due
to superradiance and the other called spontaneous scalarization. We
analyse them in chapters 3 and 4 respectively.

In the following chapters we report on the second study of this thesis,
dealing with mergers of dark matter halos.

As already introduced above, dark matter is something that has to in-
teract with ordinary matter just gravitationally (and that’s why it has not
been detected so far) and that resides in the whole universe, since evidences
come through di↵erent observational techniques, spanning di↵erent scales.
Indeed, the existence of dark matter is motivated

• at the largest scale possible: the size of the whole universe. The
detection of the power spectrum of the Cosmic Microwave Background
(CMB) shows temperature fluctuation �T/T ⇠ 10�5, that is 2 orders
of magnitude smaller than the value we expect looking at the present-
day structures. If we account for dark matter, that didn’t interact
electromagnetically with the CMB photons, then structures started
forming before CMB seeped out;

• at large scales. Spectroscopic redshift surveys measure the spatial
distribution of galaxies and how this distribution evolves in time. The
outcomes are well fit with the hypothesis of cold dark matter (where
cold refers to particles travelling with non-relativistic velocities) and
with the idea that structure formation proceeds hierarchically, by
merging of smaller objects into larger objects (galaxies ! groups !
clusters);

• at the clusters of galaxies scale: we need dark matter to sum up
the mass distribution we measure through the motions of individual
galaxies, the distortion of the images of the background galaxies due
to dense cluster cores (gravitational lensing) and the measurements of
the hot gas temperature, assuming hydrostatic equilibrium;

• at the galaxies scale: the rotational curves of the stars don’t fall o↵
as if a dark matter halo weren’t surrounding the system.

Concluding: dark matter is everywhere and plays a fundamental role
in cosmological processes, so the investigation of halos mergers is highly
motivated, since it’s the brick of structure formation.

In chapter 5 we give an introduction to our work on mergers, explaining
why these phenomena cause particles ejections, that is what we focus on.
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Later we describe how we chose to proceeded: by means of N-body simu-
lations (chapter 6) and by running single-particle smooth-field simulations
(chapter 7).

In the last chapter (the 8th) we draw conclusions of both studies reported
in the thesis: we sketch the possible observational signatures of the scalar-
tensor theories instabilities investigated, and we present the results (and
their physical consequences) of the simulations of dark matter halo mergers.

10



Chapter 2

Framework: the appearance

of an e↵ective mass

In this chapter we present the gravitational scalar-tensor theory we consider
in the whole work, and we derive all the mathematical equipment we will
later need. We show how couplings of scalar field to matter are equivalent to
en e↵ective mass for the scalar field, that can be responsible for instabilities.

We use natural units ~ = c = G = 1 and the signature (�,+,+,+) for
the metric.

2.1 The action

We work in the context of a general scalar-tensor theory of gravity. Great
part of these theories can be described by the following action S (Fujii and
Maeda, 2003; Faraoni, 2004)

S =
1

16⇡G

Z
d4x
p�g (F (�)R� Z(�)gµ⌫@µ�@⌫�� U(�))+S( m; gµ⌫) ,

(2.1)

where G is a constant, R the Ricci scalar, g the determinant of the met-
ric gµ⌫ ,S( m; gµ⌫) is the action describing all matter fields  m, minimally
coupled to gµ⌫ , and � is the scalar field that the theory introduces.

By properly casting the functions F (�), Z(�) and U(�), we recover the
specific scalar-tensor theory we want to look at. For example, setting F (�) =
�, G(�) = !

0

/� and U(�) = 0 we designate the Brans-Dicke theory (Brans
and Dicke, 1961), one of the scalar-tensor theories most widely studied.

The action S in equation (2.1) is written in the Jordan frame, i.e. the
scalar field is not minimally coupled to gravity. In order to reduce the
gravitational sector of the theory to the canonical Einstein form, we write S
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in the Einstein frame, by performing the following conformal transformation

gEµ⌫ =F (�)gµ⌫ , (2.2)

�(�) =
1p
4⇡

Z
d�


3

4

F 0(�)2

F (�)2
+

1

2

Z(�)

F (�)

�
1/2

, (2.3)

A(�) =F�1/2(�) , (2.4)

V (�) =
U(�)

F 2(�)
. (2.5)

Here, A(�) is the coupling function, which expresses the strength with which
the scalar field � interacts with matter, and V (�) the rescaled potential.
After these substitutions, the action S in the Einstein frame reads

S =

Z
d4x
p
�gE

✓
RE

16⇡
� 1

2
gEµ⌫@

µ�@⌫�� V (�)

16⇡

◆
+S( m;A(�)2gEµ⌫) .

(2.6)

We can now derive the equations governing the system, obtaining the
analogous version of the Einstein’s equation, where the scalar field � appears
as a source of gravity,

GE
µ⌫ = 8⇡

 
TE
µ⌫ + @µ�@⌫��

gEµ⌫
2

(@�)2
!
� gEµ⌫

2
V (�) , (2.7)

and the Klein-Gordon equation controlling �

⇤E� = �A0(�)

A(�)
TE +

V 0(�)

16⇡
, (2.8)

where we derive the stress-energy tensor TE
µ⌫ in the Einstein frame from the

Jordan one using the relation TE
µ⌫ = A2(�)Tµ⌫ .

The coupling between the scalar field � and the matter acts as a mass

term in equation (2.8) through the expression�A0
(�)

A(�)

TE . This is responsible
for the mechanisms we investigate in the next chapters, but before moving
on that let us simplify the mathematics of the problem.

2.2 A perturbative approach

To better handle equations (2.7) and (2.8), we proceed with a perturbative
analysis. We assume the potential V (�) and the coupling function A(�) to
be analytical around the background solution �

0

V (�) =
X

n=0

Vn(�� �0

)n , (2.9)

A(�) =
X

n=0

An(�� �0

)n . (2.10)
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We can now expand equations (2.7) and (2.8) in the first order in a small
' ⌘ � � �

0

⌧ 1, obtaining

GE
µ⌫ =8⇡

 
TE
µ⌫ + @µ�0

@⌫�0

� gEµ⌫
2

(@�
0

)2
!
� gEµ⌫

2
V
0

� gEµ⌫
2

V
1

'

+ 8⇡
�
@µ�0

@⌫'+ @µ'@⌫�0

� gEµ⌫@µ�0

@µ'
�
, (2.11)

⇤E�
0

+⇤E' = �A
1

A
0

TE +
V
1

16⇡
+

V
2

'

8⇡
+ 'TE

✓
A2

1

A2

0

� 2
A

2

A
0

◆
. (2.12)

With the following considerations, we can cut down equations (2.11)
and (2.12) to more concise formulations.

• The term where V
0

appears in equation (2.11) is equivalent to a cos-
mological constant. We then choose to look at asymptotically flat

solutions and set V
0

= 0 = V
1

.

• In equation (2.12), if A
1

6= 0, a constant �
0

could not be a possi-
ble background solution and we would already face a hairy configu-
ration deviating from what general relativity prescribes. Regardless
of whether the theory allows hairless solutions, there exist possible
mechanisms that would make a non-trivial � profile develop. To point
them out, we impose A

1

= 0 and we consider a general relativistic

solution as background �
0

.

The choice of setting A
1

= 0 can appear restrictive. However, since the
term A0(�)/A(�) in equation (2.8) has been already constrained by weak
gravity experiments and tests for the strong equivalence principle violation
to be negligibly small (Damour and Esposito-Farese, 1996, 1998; Freire et al.,
2012), we can infer A0(�

0

) ⇡ 0, then �
0

is an extremum for the function
A(�) and A

1

= 0 is a motivated assumption.
All that remains of equation (2.12) at the first order in ' is

⇤E � V

2

8⇡
+

2A
2

A
0

TE

�
' ⌘ ⇥⇤E � µ2

s(r)
⇤
' = 0 . (2.13)

We are left with a simple expression for the e↵ective mass µ2

s that the scalar
field develops in the presence of matter:

µ2

s(r) ⌘ �
2A

2

A
0

TE , (2.14)

where we omit the term V2
8⇡ since it is related to a standard mass term of

the field � and would not change qualitatively our discussion.
The value of the e↵ective mass squared µ2

s depends both on the specific
scalar-tensor theory, through the constants A

0

and A
2

, and on the matter
content we deal with, through the trace of the stress-energy tensor TE .
According to the sign of µ2

s, we later show two distinct e↵ects the system
can experience:
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• µ2

s = �2A2
A0

TE > 0 =) superradiance,

• µ2

s = �2A2
A0

TE < 0 =) spontaneous scalarization.

Superradiant instabilities are related to spinning black holes: their rota-
tion will be slowed down by energy tapping into a scalar field fluctuation.
Its end state is still, in principle, a solution of general relativity. Super-
radiance requires the black hole to be rotating above a certain threshold;
interestingly, astrophysical black holes are commonly highly-spinning, so as-
trophysical observations can be used to put constraints on this instability
and, in turn, on scalar-tensor theories.

With spontaneous scalarization we mean that the field equations allow
for two solutions: the general relativistic one (with constant scalar field)
and another one with a nontrivial scalar profile. The term spontaneous
scalarization was introduced by Damour and Esposito-Farése in the context
of neutron stars to signify that, in a certain region of parameter space, the
general relativistic solution is not the preferred one because it is unstable
(Damour and Esposito-Farese, 1993).
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Chapter 3

Superradiance

When the e↵ective mass µ2

s is positive, instabilities due to superradiance can
occur. Since superradiance can be experienced only by a spinning black hole,
at the beginning of this chapter we review the Kerr solution that describes
it and introduce how the extraction of energy takes place. We describe the
numerical recipe used to determine the unstable modes and to compute the
resonant amplification of scattering waves, within a simple mass distribution
model.

3.1 The Kerr black hole

Black holes are the outcome of the gravitational collapse of massive stars.
Stars are observed to be rotating , so we expect black holes to possess angular
momentum.

In general relativity, the Kerr metric gµ⌫ describes the space-time ge-
ometry around a massive spinning object (Kerr, 1963) and it is a unique

solution solving the Einstein equations in vacuum for a rotating black hole
(Shapiro and Teukolsky, 1983).

A black hole featuring mass M and angular momentum J = Ma can be
described in Boyer-Lindquist coordinates xµ = (t, r, ✓,�), resulting in the
line element ds2 (Boyer and Lindquist, 1967)

ds2 = gµ⌫dx
µdxµ =�

✓
1� 2Mr

⇢2

◆
dt2 � 2Mrasin2✓

⇢2
2dtd�+

⇢2

�
dr2

+⇢2d✓2 +

✓
r2 + a2 +

2Mra2sin2✓

⇢2

◆
sin2✓d�2 ,

(3.1)

where � = r2 + a2� 2Mr and ⇢2 = r2 + a2cos2✓ and the black hole rotates
in � direction.
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Solving the quadratic equation 1/grr = 0, we find that the black hole has
a coordinate singularity at r = r

+

= M +
p
M2 � a2, which corresponds

to the event horizon, beyond which no signal can escape.
The metric gµ⌫ reduces to the Schwarzschild metric when a = 0, i. e.

we recover spherical symmetry when the black hole is not rotating. gµ⌫ is
invariant under inversions of t and of � occurring at the same time (t !
�t ,�! ��), as time inversion of a spinning body induces the body to spin
in the opposite direction.

From the expression of r
+

we infer that the spinning parameter a is
bounded from above: the relation a < M has to hold in order for the black
hole to exist, i.e. for the metric to display an event horizon and not a naked
singularity (which is also supported by the cosmic censorship hypothesis).

Since the rotating black hole is stationary and axial symmetric, the Kerr
geometry possesses two killing vectors t↵ = @x↵/@t and �↵ = @x↵/@�. Thus
a stationary observer (i.e. moving in � as the black hole) with constant
angular velocity ⌦ = d�/dt, has four-velocity u↵ = �(t↵+⌦�↵), where the �
factor is determined by the normalization u↵u↵ = �1. In particular, we can
calculate the angular velocity ⌦H with which a stationary observer sitting
at the event horizon r

+

spins:

⌦H =
a

2Mr
+

. (3.2)

We move on to the case of a static observer: its four-velocity is propor-
tional just to the t↵ killing vector: u↵ = �t↵, where � is again a normaliza-
tion factor leading to ��2 = �gtt =

�
1� 2Mr/⇢2

�
. Looking at � we notice

that the static observer four-velocity is not timelike in the whole space-time.
The static limit is located at gtt = 0 and corresponds to the surface

re = M +
p
M2 � a2cos2✓ . (3.3)

Inside the region r
+

< r < re, an observer cannot remain static, i.e. it must
rotate with the black hole. This phenomenon is called frame dragging and
the region of space-time where it takes place is known as ergosphere. Due
to the dependence on ✓ in re, this surface is not spherically symmetric: it
looks like a pressed ball along the axis of rotation: at the poles there are the
minima for re and the surface overlaps the event horizon re(✓ = 0) = re(✓ =
⇡) = r

+

; at the equatorial plane ✓ = ⇡/2, re reaches its biggest value.

3.1.1 Extraction of energy and instability

The existence of the ergosphere is tightly related to the black hole to be
spinning: its static counterpart (the Schwarzschild metric) doesn’t feature
a inertial frame dragging. The ergosphere is seemingly a place where in-
teresting things can happen. Indeed, Penrose was the first to demonstrate
that rotational energy can be extracted from a black hole by orbiting and
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Figure 3.1: The black hole bomb. The shape of the radial part of the poten-
tial for the frequency eigenvalue problem. Superradiant modes are localized
in a potential well region created by the mass mirror from the spatial in-
finity on the right, and by the centrifugal barrier from the ergoregion and
horizon on the left. (Arvanitaki and Dubovsky, 2011).

fissioning particles, through a process that carries his name (Penrose, 1969).
Later on, Misner pointed out that waves can also extract rotational energy,
thanks to superradiant scattering, in which an impinging wave is ampli-
fied as it scatters o↵ a rotating black hole (Misner, 1972). He showed that
the unstable modes have frequencies ! that satisfy the condition

! < m⌦H ,

with m the azimuthal number.

As an application of superradiance, Press and Teukolsky later considered
the system black hole - scalar wave and placed it inside a spherical mirror.
In this set-up the superradiantly amplified modes get reflected by the mir-
ror and back towards the black hole, in a tennis-like configuration, ripping
some energy from the hole for each bounce and increasing the amplitude
exponentially, thus leading to an unstable configuration. They called it the
black hole bomb (Press and Teukolsky, 1972).

We show how superradiance applies to the system described in chapter 2.
The scalar field of the scalar-tensor theory can be superradiantly amplified
and the e↵ective mass squared µ2

s coming from the coupling to matter, when
positive, is a potential barrier that plays the role of a mirror and triggers a
black hole bomb-like instability, as shown in figure 3.1.
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3.2 The wave equation

Let’s recall from chapter 2: we consider a black hole in a generic scalar-
tensor theory with a matter profile around it; the background field �

0

is set
to be constant, thus the black hole is described by the Kerr metric gµ⌫ of
equation (3.1) and the system is indistinguishable from its general relativistic
counterpart.
We want to check the stability of this configuration by acting perturbatively
on the field, i.e. we consider a small deviation ' ⌘ � � �

0

⌧ 1. In
chapter 2 we derived the Klein-Gordon equation (2.13) governing ', that we
now consider with positive µ2

s, whose value depends on the specific theory
and on the matter content, through constants A

0

and A
2

and the stress
energy tensor trace TE :

⇥
⇤E � µ2

s(r)
⇤
' = 0 , µ2

s = �
2A

2

A
0

TE > 0 . (3.4)

We look for separable solutions of the above equation, thus we can ex-
press ' as

'! =  (r)S(✓)e�i!t+im� , (3.5)

for a specific frequency !, where  (r) is the radial part, S(✓) the angular
wave function and m the azimuthal number, over which it is implicit the
summation. We find that the most generic ansatz for µ2

s that separates
equation (3.4) is the following

µ2

s(r, ✓) = µ2

0

+ 2
F(✓) + G(r)

a2 + 2r2 + a2 cos 2✓
, (3.6)

where µ2

0

stands as a canonical mass term for a massive scalar, G and F are
a radial and an angular function respectively. Our point is to qualitatively
show the emergence of superradiance, thus the profile above retains enough
generality for our purposes.

With the two ansatz in equations (3.5) and (3.6), the Klein-Gordon
equation (3.4) splits into a coupled system of equations for the two functions
 (r) and S(✓)

1

sin ✓

d

d✓

✓
sin ✓

d

d✓
S(✓)

◆

+


a2
�
!2 � µ2

0

�
cos2 ✓ � m2

sin2 ✓
� F + �

�
S(✓) = 0 , (3.7)

�
d

dr

✓
�
d (r)

dr

◆
+
⇥
!2(r2 + a2)2 � 4aMrm! + a2m2

�� �G + r2µ2

0

+ �+ a2!2

�⇤
 (r) = 0 . (3.8)

18



� is the separation constant that allows the split of the wave equation and
it is found as eigenvalue of equation (3.7); after determining �, the problem
becomes an eigenvalue search for the possible frequencies ! the solution can
have.

Looking for complex frequencies ! = !R + i!I , we can identify the
instability by focusing on the modes with a positive imaginary part !I > 0,
which correspond to modes amplitudes exponentially growing in time, as we
notice from equation (3.5).

In the limit case of a ! 0, the black hole is not rotating, the problem
acquires spherical symmetry and we could substitute the terms S(✓)eim� in
equation (3.5) with spherical harmonics Ylm(✓,�), with l constant integer
l � |m|. In this case, equation (3.7) is exactly solvable with � = l(l + 1).
Going back to the a 6= 0 case, we can expand � in powers of a!

� = l(l + 1) +O(a2!2) ,

the explicit form is in (Seidel, 1989; Berti et al., 2006); in our integration
we stop the expansion at the fourth term in a! and use it to numerically
integrate the radial equation (3.8), as we describe in next section.

3.3 Numerical integration

To better handle equation (3.8), we redefine the radial function  (r) and
we introduce the tortoise coordinate r⇤

 (r) =
R(r)p
r2 + a2

,
dr

dr⇤
=

�

r2 + a2
. (3.9)

The event horizon r
+

represents a singularity in our coordinate system,
but as r ! r

+

, the tortoise coordinate pushes the horizon to infinity r⇤ !1,
so it makes us deal with better behaving functions.

Using the definitions above and setting to zero the canonical mass µ2

0

that wouldn’t change qualitatively the results, equation (3.8) reduces to

d2

dr2⇤
R(r) + UR(r) = 0 , (3.10)

with

U =
[!(r2 + a2)�ma]2 ��(�+ G)

(r2 + a2)2
� d

dr⇤

r�

(r2 + a2)2

� r2�2

(r2 + a2)4
. (3.11)

Near the boundaries of interest, i.e. the black hole horizon and spatial
infinity, the scalar field behaves as
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infinity: r⇤ ! +1,  ⇠ e+i!r⇤ , outgoing (compact domain),

horizon: r⇤ ! �1,  ⇠ e�i(!�m⌦H)r⇤ , ingoing (the only physically ac-
ceptable solution).

By looking at the incoming wave at the horizon, it is evident that in a
superradiant regime, since ! < m⌦H , the field would appear outgoing to an
inertial observer at spatial infinity, and energy is indeed being extracted.

Considering the boundary conditions above, we can write the solution
R(r) at the boundaries as series expansions (Dolan, 2007). At the event
horizon, we have

Rh(r) = e�i(!�m⌦H)r⇤
NX

0

hi(r � r
+

)i , (3.12)

and at spatial infinity

R
inf

(r) = ei!r⇤
NX

0

gi
ri

. (3.13)

The expressions of coe�cients hi and gi are determined straightaway
assuming that the matter profile doesn’t have support in the asymptotic
regions. The typical order of the series is 3 and 7, for the horizon and
infinity respectively. These values are increased when there is the need to
double-check an ambiguous result, since they directly a↵ect the accuracy of
the integration, although slowing down the computation.

Using the expansion R
inf

, we can write a generic solution as

R
gen

(r) = ei!r⇤

 
A

out

+
NX

1

gi
ri

!
+ e�i!r⇤

 
A

in

+
NX

1

gi
ri

!
, (3.14)

where we combined the two possibilities: an outgoing field with coe�cient
A

out

and an ingoing characterised by A
in

.
We numerically integrate in r the homogeneous radial equation equa-

tion (3.10) starting from the horizon at (1 + ✏)r
+

, where we adopt an in-
dicative value ✏ = 10�4, using the series in equation (3.12). We integrate
outward until a large value of r = r

inf

, the assigned spatial infinity. We
check the accuracy of the integration by varying the value of r

inf

, that can
range from 3/! to 100/!, until getting typically a 10�5 accuracy, i.e. when
di↵erent r

inf

values yield to the same result up to the fifth decimal digit.
We finally find the coe�cients A

in

and A
out

of equation (3.14) by match-
ing the numerical solution at r

inf

with our generic solution R
gen

. We build a
function that for every di↵erent frequency ! returns the value of A

in

. In or-
der to satisfy our boundary condition at infinity, i.e. having just an outgoing
field, we look for zeros of the function: the frequencies such that A

in

= 0.
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Another consequence of looking for unstable modes is that the radial
solution  is spatially confined for !I > 0, so we can plot the absolute value
| | of the numerical solution after each integration to check if it goes to zero
at r ! r

inf

. Most of the time a better guess of the numerical infinity r
inf

improves the outcome of this check.
In the next section we show the results of the numerical integration

with some specific profile for µ2

s(r, ✓). Before starting to integrate with the
specific profile, the code has been checked with µ2

s = 0 and µ2

s = constant,
and confronting the frequencies obtained for di↵erent modes with the values
already known in literature, e.g. in (Leaver, 1985; Cardoso and Yoshida,
2005; Dolan, 2007).

3.3.1 Spherically symmetric model

We look for unstable modes of the scalar field perturbation ' using a spher-
ically symmetric matter profile, thus with µ2

0

= 0 and F(✓) = 0

µ2

s = 2
�⇥(r � r

0

)r�n(r � r
0

)

a2 + 2r2 + a2 cos 2✓
, (3.15)

with ⇥(r) the step function. This profile retains two important character-
istics we expect matter structures around black holes have: it displays an
inner surface characterised by the radius r

0

and falls down at large radii
with steepness dictated by the parameter n.

The constant � includes information both on the scalar-tensor theory
and on the matter density of the accretion halo, since we are not aware of
the specifics of these. Thus we carry a general and qualitative discussion.

In figures 3.2 to 3.5 we summarise the results showing just the unstable
modes found. All the plots refer to l = m = 1 modes, for which the e↵ect
is stronger and easier to numerically track. The spinning parameter is set
to be a = 0.99, since astrophysical black holes are observed to be highly
spinning (McClintock et al., 2006). We use two di↵erent fallo↵s: n = 3 and
n = 4. For each of them we track some unstable modes for fixed � and
increasing r

0

and the other way around.
In all figures the top panel refers to the real part of the frequency !R

and the bottom to the imaginary !I . In the !R plots we highlight with a
dotted line the superradiant limit m⌦H ; it is very clear that it is indeed
when the real part of the frequency gets below the limit that the instability
arise since the imaginary part becomes positive !I > 0.

Looking at the plots with varying r
0

it is noticeable that a minimum r
0

is needed for the instability to take place; this is expected since the possible
frequencies scale as ! ⇠ 1/r

0

, so for too small r
0

the superradiant condition
wouldn’t be fulfilled.

In the plots with varying �: the instability rate grows with � up to some
value, after which � increases without a remarkably e↵ect on !I . This is akin
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Figure 3.2: Superradiant unstable modes for an n = 3 profile and di↵erent
values of �.

Figure 3.3: Superradiant unstable modes for an n = 4 profile and di↵erent
values of �.
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Figure 3.4: Superradiant unstable modes for an n = 3 profile and di↵erent
values of r

0

.

of the black hole bomb: when the potential barrier is high enough to trap
the field, an even higher barrier doesn’t change qualitatively the mechanism
(Cardoso et al., 2004).

The growing scale of the instability is ⌧ ⇠ 1/!I , so higher values of
!I signal faster growing instability (i.e. every 1/!I the amplitude of the
field gets approximately doubled). But as the unstable mode grows, the
black hole slows down (⌦H decreases) and !R will eventually overcome the
superradiant limit and end up in a stable state.

3.3.2 Resonant amplification

Besides the instability described previously, superradiance is related to an-
other phenomenon that could leave possible observational signatures: the
scattering of monochromatic waves.

We have already seen that the physical ingoing asymptotic solution at
the horizon  ⇠ e�i(!�m⌦H)r⇤ corresponds to a coordinate outgoing wave
when ! < m⌦H , i.e. the wave has to be physically ingoing in the frames of all
physical observers, who would be all dragged around the hole by its rotation.
For example, let us consider an incident wave on the black hole; generally,
part is reflect from the potential barrier (the central peak in the illustration
3.1) and part seeps down over the event horizon, so the resulting outgoing
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Figure 3.5: Superradiant unstable modes for an n = 4 profile and di↵erent
values of r

0

.

wave is weaker than the original. When the superradiant condition holds,
the wave who passes through the barrier comes back too and sums up to the
barrier reflected wave, so we eventually experience more outgoing energy
than ingoing, at the expense of black hole rotational energy (Bekenstein,
1973).

In the context of general relativity the amplification of the scalar field
is low: of the order of few tenths percent in energy, at most 0.4% (Press
and Teukolsky, 1972). We here show that amplification within scalar-tensor
theories can be remarkably substantial.

Our modus operandi is close to what done for the bomb case: we numer-
ically solve equations (3.7) and (3.8) with the spherical profile (3.15). We
can re-write the usual boundary conditions in the following way

 ⇠
⇢ T e�i(!�m⌦H)r⇤ r⇤ ! �1

e�i!r⇤ +Rei!r⇤ r⇤ !1 , (3.16)

describing an incident wave of amplitude normalised to unity from spatial
infinity giving rise to a reflected wave of amplitude R and a transmitted
wave of amplitude T at the horizon. Plugging the asymptotic solutions into
the master equation (3.10), we can derive

(! �m⌦H)|T |2 = !(1� |R|2),
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Figure 3.6: Amplification factor (in percentage) as function of the frequency
for a scalar field scattered o↵ a Kerr black hole with a = 0.99 and matter
profile featuring r

0

= 5.7M and di↵erent values for �, for the l = m = 1
mode. The black horizontal dashed line refers to the maximum superradiant
amplification in general relativity in vacuum.
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where it is once again clear that when we are in a superradiant regime
(! < m⌦H), than |R|2 > 1, i.e. the amplitude of the reflected wave is larger
than the incident amplitude.

We define the gain factor as |R|2 � 1. In figure 3.6 we summarise the
results of the integration for a black hole with a = 0.99 and matter profile
with r

0

= 5.7M with various � values, although similar plots hold for dif-
ferent parameters. We notice that for high enough �, the gain factor can be
up to 6 orders of magnitude bigger than the standard value (dashed line in
the plot 3.6).

We can use the outcomes of the previous superradiant instability anal-
ysis to better interpret these results regarding amplification. For example,
looking at figure 3.4 we notice that, within the same parameters for � and
r
0

, the frequency range in figure 3.6 refers to stable modes, so we are sure
we are looking at amplification of monochromatic waves.

From equation (2.14), we expect � / A
2

/A
0

and the latter quantity is
currently constrained just from below (Damour and Esposito-Farese, 1996).
Since the amplification e↵ect is related to big �’s, it could be important in
framing scalar-tensor theories. These relevant gain factor values correspond
to resonant-like peaks for particular frequencies. It’s again the previously
analysis done for the instabilities that helps us explaining this spike e↵ect:
we found that modes with !I = 0 exist, e.g. in figure 3.4 this happens
for � ⇡ 8194 and r

0

= 5.7M , where we only have a real component !R ⇡
0.4149/M . ! = !R modes never die o↵ (since  t ⇠ e�i!t), so would be
forever amplified. The latest case would require an incredible fine-tuning,
nevertheless it shows what’s behind the spikes in the plot 3.6.
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Chapter 4

Spontaneous scalarization

When the e↵ective mass µ2

s is negative and below a certain threshold, the
black hole hairless configuration is unstable and a non-zero scalar field is
spontaneously excited. This is the direct analog of the spontaneous scalariza-
tion studied for compact stars in scalar-tensor theory (Damour and Esposito-
Farese, 1993, 1996; Pani et al., 2011; Barausse et al., 2012).

In this chapter we first consider the non-rotating case: we compute a
lower bound for µ2

s necessary to trigger the phenomenon and we analytically
derive the possible end-states of the instability. We numerically study the
rotating case.

4.1 The spherically symmetric case

For simplicity, let us work in a polar coordinate system (t, r, ✓,�) with a
spherically symmetric matter profile TE = TE(r) that has a negligible
back-reaction in the geometry. These assumptions allow us to adopt a
Schwarzschild background metric of a black hole of mass M

ds2 = �
✓
1� 2M

r

◆
dt2 +

1

(1� 2M
r )

dr2 + r2(d✓2 + sin ✓2d�2) (4.1)

and to decompose the field ' into spherical harmonics

'(t, r, ✓,�) =
X

lm

 lm(r)

r
e�i!tYlm(✓,�) . (4.2)

Using the definitions in equations (4.1) and (4.2) we can reduce the Klein-
Gordon equation (2.13) in a one dimensional ordinary di↵erential equation
of a Schrödinger type for the radial part  (r) of the field (hereafter the
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angular subscript lm is implicit).

d2 (r)

dr2⇤
+
⇥
!2 � V(r)⇤ (r) = 0 , (4.3)

V(r) = f

✓
l(l + 1)

r2
+

2M

r3
+ µ2

s(r)

◆
. (4.4)

where we define the tortoise coordinate r⇤ as dr/dr⇤ = f = 1� 2M/r.
Given the expression for µ2

s(r) and proper boundary conditions, we are
left with a eigenvalue problem for the possible frequencies ! the solutions
have. It is clear from the time dependence of ' in equation (4.2) that an
exponentially growing instability shows up whenever the imaginary part of
the frequency assumes positive values !I > 0.

4.1.1 The threshold of the instability

In the case of spontaneous scalarization in neutron stars, the instability
arises when the central pressure of the star goes above a certain threshold.
We expect something similar to happen in our configuration, where we deal
with the density of the matter surrounding the black hole.

The potential V in equation (4.3) is unidimensional and dies o↵ at spa-
tial infinity, thus we can use the quantum mechanical results in (Buell and
Shadwick, 1995) in order to have a rough quantitatively idea of when spon-
taneous scalarization is triggered. Indeed, a su�cient condition for V to
lead to an instability is

Z 1

2M

V
f
dr < 0 . (4.5)

Looking at equation (4.4), we notice that it is the µ2

s(r) negative con-
tribution that could make the potential V satisfy the condition above. We
are indeed dealing with an instability that arises when µ2

s = �2A2
A0

TE < 0.

Substituting the expression for µ2

s, equation (4.5) reads

2
A

2

A
0

Z 1

2M
TEdr >

2l(l + 1) + 1

4M
. (4.6)

This is a rather general analytical result that we can employ with some
simple theoretical models.

Simple models

Let us start by considering a constant density spherical shell of thickness L
surrounding the hole at distance r

0

. It is described by

µ2

s = �
�

M2

(⇥(r � r
0

)�⇥(r � r
0

� L)) , (4.7)
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with ⇥(r) the step function. This profile doesn’t allow matter to be closer
than r

0

to the black hole, as it indeed happens to astrophysical objects as
accretion disks. r

0

could assume for example the value of the ISCO, the
black hole innermost stable circular orbit. The constant � sums up the
contribution of the scalar-tensor theory constants and the information on
the matter density.

Plugging the model of equation (4.7) into equation (4.6), we determine
a su�cient condition for the instability to occur within this specific matter
profile

� & 2l(l + 1) + 1

4

M

L
. (4.8)

Already this simple result shows that a minimum matter density is necessary
to experience instabilities, like in the compact stars case. This is dynamically
favoured as we can imagine the matter accreting around the black hole at
first with small enough mass for the system to be described by general
relativity and then eventually reaching the threshold for these solutions to
be spontaneously scalarized.

Moving to a more sophisticated model, let us examine the following

µ2

s = �⇥(r � r
0

)�Mn�3

r � r
0

rn
. (4.9)

Besides the existence of an inner surface, in this profile matter is arranged
such that it radially fades o↵, so it eventually decays to zero assigning a
proper n parameter. In details, there is no matter at radii r < r

0

, than the
density peaks at r = n/(n� 1)r

0

and decay ⇠ r1�n at large distances.
Within this profile, spontaneous scalarization occurs for

� & 2l(l + 1) + 1

4
(n� 2)(n� 1)

⇣ r
0

M

⌘n�2

. (4.10)

We are now able to check the fairness of the condition borrowed from
quantum mechanics, illustrated by equation (4.5). We integrate numerically
equation (4.3) substituting µ2

s with equation (4.9). We adopt the boundary
conditions

infinity r⇤ ! +1  ⇠ e+i!r⇤ , outgoing waves (compact domain),

horizon r⇤ ! �1  ⇠ e�i!r⇤ , ingoing waves (the only physically accept-
able solution).

and we use a code akin to the one described in section 3.3. We track the
unstable modes thus found changing the constant �. A sample of the results
is shown in figure 4.1, plotting just the imaginary part !I for three di↵erent
l modes since !R = 0. On the x-axis we highlight with dots of the cor-
responding colours the threshold values determined by equation (4.10) and
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notice that are in the instability range: indeed equation (4.5) is a su�cient
condition for spontaneous scalarization to occur.

The instability connected to spontaneous scalarization is characterised
by purely imaginary modes, as !R = 0 for all values of �.
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Figure 4.1: Unstable modes for a Schwarzschild background in a scalar-
tensor theory surrounded by a matter profile as in equation (4.9) with n = 5
and r

0

= 6M , for di↵erent modes l. The red dot and the blue diamond
correspond to the threshold values calculated through equation (4.10) for
the l = 0 and l = 1 modes (the respective l = 2 value lays outside the
��range of the graph).

Constraints on the matter distribution

Using a dust approximation with negative TE ⇠ �⇢, with ⇢ the matter
density, we need a negative A2

A0
for the instability to arise. Binary pulsar

experiments already constrain scalar tensor theories parameters from below
(Damour and Esposito-Farese, 1996)

A
2

A
0

& �26 . (4.11)

Since we are assuming TE ⇠ �⇢ we can rewrite the conditions for � in
equations (4.8) and (4.10) in terms of the mass µ of the spherical distribution
(for the second model, its finiteness requires n > 4)

µ = 4⇡

Z
TEr2dr,
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getting respectively for the two models

�A
2

A
0

µ

M
&2l(l + 1) + 1

6

3r
0

(r
0

+ L) + L2

M2

, (4.12)

�A
2

A
0

µ

M
&2⇡

2l(l + 1) + 1

2

(n� 2)(n� 1)

(n� 4)(n� 3)

⇣ r
0

M

⌘
2

. (4.13)

We can use the maximum value allowed (in absolute value) for A
2

/A
0

to have an idea of how much matter is necessary to activate spontaneous
scalarization. We pick the l = 0 mode and approximate the first model with
L⌧ r

0

and the second with n� 1 and we get the requirement

µ

M
& 0.1

⇣ r
0

M

⌘
2

. (4.14)

4.1.2 Is the assumption of a Schwarzschild background con-

sistent?

In the previous toy models, we assume that the background metric is that of
a Schwarzschild black hole, even in the presence of matter; this would require
µ ⌧ M , which barely fits the requirement in equation (4.14). Anyways,
spontaneous scalarization is a pretty generic e↵ect and we now show it takes
place also in more consistent frameworks.

Let us examine a spherically symmetric black hole surrounded by a spher-
ically thin shell at distance R. There is an exact solution of Einstein’s
equation and the metric reads

ds2 = �(1� 2m(r)/r)dt2 + (1� 2m(r)/r)�1dr2 + r2d⌦2 , (4.15)

where

m(r) =

⇢
M for r � R
M

int

for r < R.

We assume the shell to be composed by perfect fluid and to be spatially
two-dimensional, then the surface stress-energy tensor reads

SE
ab = �uaub + P (�ab + uaub) , (4.16)

with P the pressure and � the surface energy density, �ab the induced metric
on the shell and ua the on-shell four-velocity, all quantities referring to the
Einstein frame. It follows that the stress-energy tensor trace reads

TE = S�(r �R) = SE
ab�

ab�(r �R) = (2P � �)�(r �R) . (4.17)

The Israel’s junction conditions provide and expression for the internal
mass M

int

and R in terms of �, P and M (Israel, 1966).
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In this system, the su�cient condition for spontaneous scalarization in
equation (4.5) reads

2
A

2

A
0

(2P � �) >
2l(l + 1) + 1

4M
int

+
M �M

int

R2

> 0 , (4.18)

which reduces to the second model previously discussed when M
int

= M .
In this case, the appearance of the instability is related to the thermo-

dynamical properties of the matter distribution. According to the sign of
A

2

/A
0

, we could either require � > 2P or � < 2P .

4.2 The case of a rotating black hole

To look for unstable modes due to spontaneous scalarization in a Kerr back-
ground, we adopt the numerical integration described in section 3.3, using
the spherically symmetric mass distribution in equation (3.15) and consid-
ering a negative constant � (in order to have µ2

s < 0).
Results are summarised in figures 4.2 and 4.3, with !R in the top plot

and !I in the bottom, for di↵erent values of � and di↵erent matter position
r
0

. As we already found in the Schwarzschild case, the denser the matter
distribution, the stronger is the instability, which in our case is related to
bigger values of |�| that correspond to higher frequency imaginary part !I .
Moreover, high instability is also related to small values of r

0

, thus to the
vicinity of matter to the black hole.

Unlike the superradiant modes found in chapter 3, in the spontaneous
scalarized case we cannot track unstable modes beyond !I = 0, i.e. the
modes are unstable per se.

4.3 The final state

Once verified that general relativistic solutions can be unstable when µ2

s < 0,
we want to understand towards what configurations the system approaches
to overcome the instability. Our strategy is to look for the possible stationary
hairy solutions to the field equations that retain the same symmetry of the
initial problem, skipping this way a non-linear time evolution. We choose
to operate in two ways: adopting the Israel’s formalism to describe the
thin shell (Israel, 1966) and by a perturbative analysis, then we numerically
integrate and compare the results.

Israel’s junction approach

Let us go back to the spherically symmetric case, considering a spherical
thin shell of matter. The space-time we deal with is described by

ds2 = �h(r)dt2 + f(r)�1dr2 + r2(d✓2 + sin2✓d�2) (4.19)
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Figure 4.2: Spontaneous scalarization. Unstable modes for an n = 3 profile
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with h and f functions of the radius r only.
Since we consider a zero-thickness shell of matter distribution, TE = 0

everywhere: the Klein-Gordon equation (2.8) for the original field � = �
0

+'
reduces to

d�

dr
=

Q

r2
p
fh

, (4.20)

where Q is the scalar charge that is function of the shell composition (surface
density � and pressure P ) and of the scalar-tensor theory (coupling function
A(�)). Indeed, using the stress-energy tensor trace in equation (4.17), the
full equation (2.8) reads

d

dr

⇣
r2
p

hf�0
⌘
= �A0(�)

A(�)
S�(r �R) . (4.21)

And integrating it across the shell we determine

Q =
A0

A

����
R

(� � 2P ) , (4.22)

where A0 and A are to be evaluated at the shell’s location, r = R.
Hence, the charge Q is uniquely determined by the thermodynamical

properties of the shell � and P and the value of the field at the shell position
�(R). As expected, when A0 vanishes at the radius then Q = 0 , i.e. when
�(R) = �

0

. In this case, the scalar field is constant through the entire
space-time and the solution reduces to its general relativistic counterpart,
with constant �

0

in the background.
Using the metric in equation (4.19) and �0 in (4.20), we are able to solve

the Einstein’s equations in (2.7). The tt and rr components yield

4⇡Q2 + r2h
�
f + rf 0 � 1

�
=0 , (4.23)

4⇡Q2 + r2h (1� f)� r3fh0 =0 , (4.24)

the other two components are linear combinations of the equations above.
To express the jump in the metric as function of the shell thermodynam-

ical properties, we borrow again the results in (Israel, 1966). For a static
shell at r = R it holds

� =� 1

4⇡R

⇣p
f
+

�
p
f�
⌘
, (4.25)

P =
1

8⇡R

✓
�4⇡R� +

p
f
+

Rh0
+

2h
+

�
p
f�

Rh0�
2h�

◆
. (4.26)

Now we are able to integrate equations (4.23) and (4.24) from spatial
infinity to the the shell, then we use equations (4.25) and (4.26) as matching
conditions and keep integrate up to the Schwarzschild interior.
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Perturbative approach

Let us consider the metric describing the space-time in the limit of a small
scalar charge Q

ds2 = �
✓
1� 2M

r
+H

◆
dt2+

1

1� 2M
r + F

dr2+r2(d✓2+sin2✓d�2) , (4.27)

where H and F are functions of r. We know in the interior (inside the shell)
the metric is Schwarzschild so � = constant has to hold (as for all general
relativistic solutions); it follows that

H = F = C/r.

To determine H and F in the exterior, we impose asymptotic flatness,
i.e. the metric becomes flat at large radii, and we get

�0 =
Q

r(r � 2M)
, (4.28)

F =
2⇡Q2

Mr
log

✓
r

r � 2M

◆
, (4.29)

H =� 2⇡Q2

M2r


2M + (r �M) log

✓
r � 2M

r

◆�
, (4.30)

with M the total mass in the Einstein frame, which is di↵erent from the
Schwarzschild interior mass, that can be derived from the event horizon rh

M
int

⌘ rh
2

=
2M � C

2
. (4.31)

At large distances, it can be derived from equation (4.28) that � ⇠ Q/r;
in the physical Jordan frame, this corresponds to a shell with an e↵ective
scalar charge / Q. Indeed, using equation (2.2) and the expansion in (2.10),
the large-distance expansion of the metric gtt in the Jordan frame reads

�gtt = 1� 2M � 2A
1

Q

r
+

A2

1

Q2 � 2A
1

MQ+ 2A
2

Q2

r2
. (4.32)

Therefore, in theories with A
1

6= 0 the scalar field contributes to the
total physical mass. Furthermore, the space-time acquires a scalar charge
given by the coe�cient of the 1/r2 term above. When A

1

= 0, the scalar
charge is proportional to

p
A

2

Q.
We now have a well defined problem: the scalar charge Q is determined

by the matter composition parameters � and P and the equations above
allow us to derive the metric components and the possible field profiles.
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scalar charge Q for di↵erent values of the pressure P . The surface energy
density is set to �M = 10�3.
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Results: hairy solutions

The results are summarise in figure 4.4: the plot is unique because the exact
solutions agree very well with the perturbative ones, even if the latest are
considered up to the first order in Q.

We numerically integrate for the scalar charge Q the exact field equa-
tions (4.23) and (4.24) keeping the total mass M fixed. In figure 4.4 we show
the internal mass M

int

from equation (4.31), the shell position R and the
Kretschmann scalar K = RabcdR

abcd at the black hole radius rh as functions
of Q.

In the plot, we normalise all quantities by their general relativistic values,
i.e. the Q = 0 case, and the horizontal axis has been rescaled by Q

extr

, which
corresponds to the extremal solution such that M

int

(Q
extr

) = 0, i.e. no black
hole at all. With these normalisations, the quantities M

int

and K are almost
universal for di↵erent values of the pressure. K in a scalar invariant that
gives us information on the curvature; indeed in the limit case of Q = Q

extr

,
K diverges since the disappearance of the black hole (i.e. of its horizon)
leaves the singularity naked. As the charge increases Q! Q

extr

, the internal
mass decreases and the shell is pushed further away, i.e. R increases.

Concluding: for large values of Q, the structure of the hairy black hole
can be very di↵erent from its general relativistic counterpart. We have thus
constructed nonlinear, hairy solutions of scalar-tensor theories with

a black hole at the centre, and since they are the only static spherically
symmetric solutions to the field equations, we claim they are the end state
of the instability that the matter profile has triggered in the Schwarzschild
background metric.

We found an infinite number of hairy solutions, depending only on the
parameter Q, i.e. on the constant value of the scalar field in the interior.
On the other hand, in the case of spontaneous scalarization in neutron stars
Q assumes only specific values (Damour and Esposito-Farese, 1993, 1996;
Pani et al., 2011). This is probably due to our assumption that the matter
distribution does not have a back reaction in the metric (i.e. the metric
in the interior is Schwarzschild), otherwise the asymptotic behaviour of the
scalar field is determined by the matter configuration near the black hole
and one expects that regular solutions (at the horizon and at infinity) would
sort out only a finite number of scalarized configurations.
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Chapter 5

The restless dark matter

As we already discussed in chapter 1, observations suggest that structure for-
mation in the Universe proceeds hierarchically, with the smallest structures
collapsing first and then later merge to form lager structures.

When a small structure is engulfed by a larger one, it will be ripped
apart dynamically and a new equilibrium state will be eventually reached.
At the end of this relaxation process, the virial theorem must hold

2K +W = 0 , (5.1)

where K and W are the total kinetic and potential energies of the system.
Let us consider a merger between two structures. Initially they are

singularly in steady state, so the virial equation holds for both

2K
1

+W
1

= 0 , 2K
2

+W
2

= 0 .

If structure 1 is much bigger than structure 2, i.e. W
1

⌧ W
2

, then the
initial energy of the big is E

1

= K
1

+W
1

= �K
1

, whereas we can ignore the
potential in the total energy of the small when we consider the merger, so
E

2

= K
2

. When equilibrium is reached again, the new structure has a final
kinetic energy K that has to satisfy the virial theorem:

K = �E = �(E
1

+ E
2

) = �(�K
1

+K
2

) = K
1

�K
2

.

Thus, equilibrium after a merger doesn’t come for free, but an amount of
energy of roughly 2K

2

has to be disposed. Baryons can easily radiate away
this energy, cooling down and reaching the so called virial temperature.
However, if we are dealing with dark matter, which is non-radiative, the
halo can reach a virial equilibrium without any signification modification of
the large structure by ejecting some particles out of the system and let them
carry the energy that has to be discarded.

On energetic grounds, it is thus clear why particles ejections are experi-
enced in the course of mergers.

39



The relaxation and mixing processes in collisionless mergers have been
examined in (Valluri et al., 2007), where they found that mixing of the 6-
dimensional phase space distribution function mainly occurs during the tidal
shocking arising when the centre of the merging halos pass through each
other. They also find that around 40% of the particles from the merging
halos are located outside the virial radius of the remnant. In controlled
numerical galaxy collisions it has been known for years that some particles
are ejected with positive energies, e.g. in (Hernquist, 1990). In cosmological
simulations (i.e. within an expanding background) it has been found that
unbound particles are abundant in halos which have recently undergone a
major merger (Behroozi et al., 2013).

Our goal is to understand the mechanism responsible for the ejection:
how do particles acquire energy enough to leave the system in which they
are bound? How are the sacrificed particles di↵erent from the others?

These are the questions we address by performing numerical simulations.
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Chapter 6

N-body simulations

The physical processes involved during mergers are hard to quantify due
to the rapidity of how the two encounters reach a new steady state: few
crossing times. This highlights the need of using numerical simulations
rather than analytical arguments as first approach towards an understanding
of the phenomenon.

We investigate dark matter halo mergers through N-body simulations.
We observe an ejection of particles initially belonging to the smaller halo as
consequence of the relaxation of the resulting structure. We focus on the
features of the ejection.

6.1 Simulations Set-Up

Our aim is to study systems with extremely large number of particles as dark
matter halos. Among these particles the only force acting is gravity, which
is a long-range interaction. In this kind of configurations, the two-particle
relaxation time greatly exceeds the age of the structure: the system is

collisionless. We perform three-dimensional simulations using GADGET-
2 (Springel, 2005), a massively-parallel N-body code. We are interested in
the dynamics intrinsic to the system, thus we do not need to consider a
cosmological background: the space is not expanding and the gravitational
potential � computed is purely newtonian

�(~x) = �G
NX

i=1

m

|~x� ~xi| , (6.1)

where N is the total number of particles and m their mass, ~xi their position
in space.

We use natural units, setting the gravitational constant G to unity. In
equation (6.1)

We mimic a merger between two dark matter halos by tracking the tra-
jectories of 1.1 · 104 particles, 104 belonging to a halo and 103 to a smaller
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one. We set the mass-ratio of the halos to 1 : 10, thus all particles have the
same mass.

In GADGET-2 all the two-body interactions are calculated assuming
point-like particles; in order to speed up the computation, to calculate the
force acting on each single body the software separates the rapidly varying
forces due to the small number of nearby particles from the slowly varying
forces due to the large number of distant ones using a so called tree-code.
Numerical infinities can arise when the distance between two particles |~xj �
~xi| becomes tiny. To avoid them, the code adopts a di↵erent spline for
distances shorter than a specified softening length ✏. We estimated ✏ to be
of the order of the mean inter-particle distance of our structure ✏ ⇠ m1/3, so
we set ✏ = 0.046. We check whether our choice doesn’t introduce relevant
errors in the computation of the gravitational force using the constancy of
the total energy of the system as a proxy.

6.1.1 Initial conditions

At t = 0 the particles are grouped into the two halos. The positions and
the velocities of the particles are chosen so that each structure, treated as
an isolated system, is in a steady state. Positions are assigned from the
Hernquist density profile (Hernquist, 1990), with constants ⇢

0

and rs

⇢(r) =
1

r/rs

⇢
0

(1 + r/rs)3
, (6.2)

and the velocities from a Gaussian probability distribution function with the
initial isotropic velocity dispersion derived from the Jeans equation (Binney
and Tremaine, 2008). All initial velocities are truncated at 0.95 vesc, with
vesc the escape velocity of each halo.

The constant ⇢
0

in equation (6.2) is such that the two halos have masses
M

1

= 1 and M
2

= 0.1; we run di↵erent simulations keeping the scale radius
of the big halo fixed rs1 = 1 and varying the small halo one within the range
0.1  rs2  0.7, corresponding to denser to more diluted structures.

The centres of mass of two halos are placed at y = 0 and z = 0 in our
cartesian coordinate system. Instead in the x direction we set the major
halo at 0 and the minor at 15. The latter value is a rough calculation of
the turnaround radius of the big structure (Prada et al., 2006; Cuesta et al.,
2008), assuming it has a typical concentration of galaxies (Maccio’ et al.,
2008). The turnaround radius corresponds to the the distance a particle
can reach before being gravitationally pulled back towards the centre of its
belonging structure in an expanding universe, thus catching the moment
in which the particle’s velocity is zero before inverting sign. The choice of
placing the small halo at the turnaround radius of the big one allows us to let
the simulation start with the centres of mass of both halos at rest. Then the
minor structure starts approaching the major one, pulled by gravitational
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Figure 6.1: Time evolution of the total energy. On the left relative to 5
random selected particles, on the right the average over all particles. Top is
for the major halo, bottom for the minor. The red dotted line corresponds
to the zero point of the energy.

attraction. After the merger, we continue the simulation for at least 10 more
dynamical times, where we define a typical dynamical time ⌧

dyn

from the
circular velocity vc at r4 = 4 rs1, ⌧

dyn

= r
4

/vc(r4).
By checking whether the total energy of the resulting structure without

the ejected particles reaches a constant value, we assure the system reaches
a new equilibrium.

We then run a test simulation increasing the number of particles by a
factor of 10 for both halos and reducing the softening length ✏ by a factor
of 2 confirming our findings.

6.2 Results

6.2.1 A first simulation

We first run a simulation with rs2 = 0.3.
For a particle to be ejected, i.e. not bounded anymore, it needs to acquire
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Figure 6.2: rs2 = 0.3 simulation. The positions in the x and y directions of
the particles at di↵erent time steps. The yellow dots belong to the major
halo, the blue triangles are minor halo particles that stay bounded through-
out the run, the red stars are minor halo particles that get ejected.
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positive total energy. To check if we experience ejection of particles when
a merger takes place, we analyse the energy time evolution of all particles
in the simulation. For example, in figure 6.1 we plot the energy of few
randomly selected particles. In the case of the big structure, its particles’
energies never leave the negative area of the plot, they stay roughly constant
in a range of values well represented by the total mechanical energy of the
halo averaged over the number of its particles.

Among the chosen particles belonging to the small halo, there are a
couple for which the mechanical energy becomes positive after the merger,
happening roughly during the time steps 60÷ 70. The mean particle energy
of the small halo displays a sharp peak at the moment of the merger and
than falls back to a roughly constant value, which is higher than the initial
one.

We identify the ejected particles as the ones with a total energy greater
than zero at the last time-step of the simulation. After having spotted them,
we can follow their trajectories from the beginning of the run. We do so in
figure 6.2, where we plot the position of the particles in the (x, y) plane at
di↵erent time steps, with the red stars indicating the particles ejected after
the merge.

The colour code allows us to follow the ejected particles in red from the
beginning of the run, to distinguish them from the other particles belonging
initially to the small structure, in blue, and those belonging to the big
structure, in yellow. We see that at t = 50 the small halo hasn’t yet crossed
the big halo core and the red particles are well mixed with the blue ones.
As the small halo enters the large halo’s core at t = 64, we see that the
red particles are those which “lag behind”and are the last ones to cross the
core. The next snapshot describes the subsequent ejection, and in the last
one at t = 200 (⇠ 23 dynamical times of the big structure ⌧

dyn

) there are
no longer red particles within 15 times the scale radius rs1, thus confirming
our predictions about the discharge of particles.

During a collision, some particles are freed from the system and will never
return, as happens to the 11% of the minor halo ones in this simulation,
whether no large halo particle is ejected.

None of the particles are freed before t = 50, so it is probably the merger
the cause of the ejection.

6.2.2 The ejection mechanism

Having identified all the ejected particles, we can plot the comprehensive
energy behaviour of the latest and compare it with that of the particles
that never leave the structure, as in figure 6.3. In the bottom panel we
show the potential energy behaviour and we see clearly that on average
the escaping particles (red) fall in the resulting potential well slightly later
than the bounded (blue) ones. Moreover, going back to the t = 64 plot in
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Figure 6.3: Time evolution of the total (upper plot) and potential energies
(bottom plot) averaged over the number of particles of the whole small halo
(green), of the particles that stays bounded (blue) and of the ejected ones
(red).
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time time

Figure 6.4: An illustration of the potential well during the merger. The red
ball corresponds to a particle that will later be ejected.

figure 6.2 (top right panel), we notice that all the ejected particles (red) are
on the right side of the minor halo when the two cores start blending.

Combining these two evidences, we get the picture that the particles that
just happen to arrive later in the region at the centre of the merger pick up
a large positive kick to their energy in a short time as they pass through
the time-dependent potential well created by the rest of the mass, as shown
in the diagram 6.4; the abrupt change in potential when the particles are
passing through it give them enough energy to reach and to exceed the
escape velocity of the structure.

In the mechanism of ejection we recognise that of violent relaxation
as originally described by (Lynden-Bell, 1967) for stellar systems: starting
from an initial configuration which is far from dynamical equilibrium, such
a system can relax precisely because, in the time dependent gravitational
potential, particles’ energies can change rapidly (i.e. on mean field time
scales). It is a matter of how violent the potential fluctuations are for the
ejection to take place.

A detailed view of the time evolution of particles’ energies here reveals
that what is happening in the minor merger is very similar. In figure 6.5 we
zoom in on the time steps during the merger. For simplicity, we pick again
4 random selected particles and we follow their energy evolution, where the
green and red (dashed lines) are ejected particles, whereas the black and
purple (dotted lines) stay bounded. We also show the energy of the most
bound particle from the small structure (stars), and the same from the big
structure (triangles). Inspecting the time steps between 62 and 67, we see
that the potentials of both the small and the large structures get deeper.
This is naturally because during the first passage when the two structures
overlap for the first time, the potentials deepen. However, during the time-
steps from 67 to 70 the potential falls back to a smaller absolute value. This
is just after the first passage of the small structure. After this point, the
potential flattens out close to the final value.
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Figure 6.5: Time variation of potential and total energies of some sampled
particles. The ones which will remain bound (black and purple dotted lines)
pass through the central region while the potentials due to both the small
and large structures (symbols) are deepening (around time step 66). This
contrast with the particles which will be ejected (red and green dashed
lines), which arrive a little later (time step 67) and pass the centre when the
potential is growing.
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Figure 6.6: The potential (left) and total (right) energies distributions for
the ejected particles (red) and for the remaining minor halo particles (blue)
at di↵erent time steps. Above each distribution, we indicate the mean value
(dot) and the standard deviation (bar). In the total energy plots, the dashed
black line signals the zero value.
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Now, comparing the time of passage of the particles which will remain
bounded (black and purple dots), we see that they pass the centre during the
deepening of the potential of the structure. On the other hand, the particles
which are ejected arrive later during the phase when the potential happens
to be weakening (i.e. increasing towards less negative values). As the sign
of the time derivative of the mean field potential is positive, the energy of
the particles increases, since the time variation in particle’s energy along a
trajectory is equal to the time derivative of the potential energy, according
to the relation (Lynden-Bell, 1967):

dE

dt
=

@W

@t
. (6.3)

To stress that the late arrival of the ejected particles is statistically
founded, in figure 6.6 we plot the potential energy distribution among the
ejected particles (red) and among the rest (blue), for the crucial time steps of
the merger. At t = 65 the red particles are indeed characterised by a higher
potential values while the blue are deepening the potential; at t = 68 there is
the shift: the red particles reach the bottom of the potential when the blue
ones are already gaining potential energy, thus inverting the potential time
derivative (the number of blue particles is ⇠ 10 times bigger than the red);
finally, at t = 71, the red particles are again the ones less bound, indeed the
ejection has started since, from the total energy distribution on the right
plot, we notice that the red mean total energy is already positive.

We note that this e↵ect is analogous to the so-called late-time integrated
Sachs-Wolfe e↵ect, in which CMB photons gain energy because of the alike
wells and hills of the potential they are traversing.

6.2.3 Which particles are ejected?

The observation that it is the particles coming in later which are ejected
is similar to the case of cold uniform spherical collapse in (Joyce et al.,
2009), where the ejected particles are found to be those starting out in the
outer shells. In this case, close analysis of the particles’ energies shows
that those which escape pick up the energy leading to their ejection when
they pass through the potential generated by the bulk of the mass which
has already turned around and started re-expanding: as the time derivative
of the potential energy @W/@t is then positive, they gain energy E, as in
equation (6.3).

To check if also in our case is the initial position of the particles to be
relevant, in figure 6.7 we plot the radial velocities and the radii of the small
structure particles before the merger happens, for three di↵erent values of
rs2. With red circles we refer to the particles that are later ejected. They are
evenly distributed among all particles, in the sense that at any given radius
the velocity distribution of the particles which are subsequently ejected is
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Figure 6.7: Logarithm of the radius r and radial velocity vr normalised with
the related virial quantities for 3 di↵erent scale radius minor halos particles
before the merger takes place in every di↵erent simulation. The red circles
represent the particles which will be later ejected, the blue dots the particles
which remain bound.

similar to that of the particles which remain bound: they are not either the
most energetic or the furthest from the centre of the halo.

Also when plotting other quantities as the angular momentum (its mod-
ule and its direction) we cannot find any particular feature that characterised
the particles in question. Thus, the decisive factor seems to be whether or
not a particle is falling early or late into the combined potential of the cores
of the halos.

6.2.4 The fraction of ejected particles

We run di↵erent simulations changing the size of the minor halo (varying rs2)
to check how this a↵ects quantitatively the ejection. In figure 6.8 we plot the
behaviour of the ejected particles fraction fp as function of the dynamical
time for 11 di↵erent simulations. fp is the ratio of the number of ejected
over the total number of particles initially belonging to the minor halo. The
number of ejected particles grows up to a peak that corresponds roughly
to a small structure with a dynamical time ⌧

dyn

(minor) ' 0.7 ⌧
dyn

(major),
then the number starts decreasing monotonically.

We are able to interpret this behaviour thanks to the considerations
made in the previous section. We are comparing two timescales, namely the
time it takes the small structure to cross the big structure, and the time for
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Figure 6.8: The value reached by the fraction of ejected particles fp after
the merge as function of the dynamical time (and scale radius) of the small
halo in each simulation, normalised with that of the big halo.

a typical orbit in the small structure. The first timescale corresponds to the
crossing time for the big structure, which is proportional to our definition
of the dynamical time, ⌧

dyn

(major) = 4rs/vc(4rs). The second timescale
is similar, but defined for the small structure, ⌧

dyn

(minor). Thus, in a
very compact small structure (low values of rs2), its particles make many
orbits while crossing the big structure, and fewer receive su�cient increase
in energy to leave the structure. On the other hand, in a very dilute small
structure (high values of rs2), the particles perform much less than one orbit
while crossing the big structure, rendering the motion almost adiabatic.

An extrapolation of the last statement is that smooth accretion should
not lead to particle ejection.

The outcomes of the N-body simulations point out that the mechanism
behind the particle ejection is a mean-field e↵ect.
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Chapter 7

Simulations with analytical

potentials

In order to demonstrate that the ejection of particles during mergers is
a mean field e↵ect, we implement a toy-model in which we consider one
particle moving in an analytical time-dependent potential. In this way we
eliminate all two-body interactions that could a↵ect the motion of the test
particle.

7.1 Simulation Set-Up

Since we want to test the conclusions reached analysing the N-body simu-
lations, we set up a new kind of 3-dimensional simulations using the same
parameters, to make the results of the two di↵erent experiences comparable.

We consider three bodies: two structures and one single particle. The
two structures are described by their analytical potential � correspondent
to a Hernquist halo (Hernquist, 1990)

�(r) = � M

r + rs
. (7.1)

The major halo has mass M
1

= 1 and scale radius rs1 = 1 and for the
minor halo M

2

= 0.1, as in all N-body simulations. We pick rs2 = 0.3 as
small structure scale radius, since it is the case we refer the most also in
chapter 6.

For simplicity, the larger structure stays still during the whole simulation,
the smallest moves accordingly to the gravitational attraction of the other.
The particle feels attraction from both structures and we follow its orbit
and energy.
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Initial conditions

Initially the centre of mass of the small halo is placed at the origin of our
(x, y, z) coordinate system, the big one is at (15rs1, 0, 0), where 15rs1 is the
values of the turnaround radius described in section 6.1.1 that allows us to
let the minor halo start from rest.

The protagonist particle of the experience is initially bound to the small
structure. Its initial position and velocity are di↵erent every time the sim-
ulation runs. First we randomly choose a radius using the Hernquist mass
profile

M(r) = M
2

✓
r

rs2 + r

◆
2

, (7.2)

i.e. we pick a random number ↵ using the normal distribution, than the
chosen radius r̄ is such that

M(r̄) = M
2

· ↵ ,

with cuto↵ at rmax = 1. Also the angles are randomly built from ↵ and we
finally set the initial (x, y, z) of the particle. The initial velocity is chosen
in a similar way, determining a typical speed v̄ at the radius r̄ just found.
We use the analytical expression for the isotropic velocity dispersion �2(r)
(Binney and Tremaine, 2008)

�2(r) =
1

⇢(r)

Z 1

r

⇢(t)M(t)

t2
dt , (7.3)

where the expressions for the density ⇢ and mass M are in equations (6.2)
and (7.2). We take the speed v̄ such that

v̄ =

r
�2(r̄)

3
,

from which we randomly derive the initial velocity components (vx, vy, vz).

Numerical integration

We run simulations from t = 0 to t = 100, with a typical time step of
�t = 0.005. For each time step i we update positions and velocities of the
two moving objects (minor potential an particle) using a leapfrog integrator,
i.e. in the three di↵erent spatial directions

xi =xi�1

+ vi�1/2�t ,

ai =F (xi) ,

vi+1/2 =vi�1/2 + ai�t ,

where F is the Newtonian gravitational force respectively acting on
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• the small halo, due to the big one,

• the particle, due to both halos.

Since the two structures are aligned in the x-direction, the minor one
moves along this coordinate. Also the particle bound to the small halo fol-
lows this x-motion, at the same time keeping orbiting around the structure.
We check its motion by looking at its total energy (with the kinetic one cal-
culated with respect to the small halo) which remains constant up to when
the merger takes place.

Once the minor halo centre of mass reaches the major one, we arrange
di↵erent scenarios trying to cover all possible situations among which any
realistic N-body simulation would lie:

case 1: the minor halo stops, we let only the particle keep moving,

case 2: the minor halo doesn’t stop and keeps moving in x still in free fall,
accordingly slowing down,

case 3: the minor halo stops as in case 1 and the merger has a small impact
parameter,

case 4: the minor halo doesn’t stop as in case 2 and the merger has a small
impact parameter.

Since in a realistic situation the small halo is engulfed by the big one, the two
extremal situations (small halo totally stops or goes on unperturbed) span
the real outcomes of the phenomenon and thus can be confronted with the
N-body simulations’ results. The two cases involving an impact parameter
are complementary to the N-body simulations already performed: in that
experience we run only head-on mergers, therefore we check how much the
problem changes with this slightly di↵erent setup.

To mimic the presence of an impact parameter, we forcedly change the
velocity of the small halo in direction vx  ! vy when the its centre is at
x = 5 for few (⇠ 102) time steps (this number fairly changes randomly to
perform di↵erent impact parameters each run).

7.2 Results

The goal of this experience is to check what happens to the particle after
the merger between the two analytical potentials: does it stay bound to the
minor halo, gets trapped by the major halo or is ejected from the system?

In figures 7.1 to 7.4 we summarise the di↵erent outcomes of the runs.
We plot the positions of the centre of the two potentials and the orbits of
particles of di↵erent simulations for each case in the (x, y) plane.
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Figure 7.1: Case 1. (x,y) plane. The minor potential (black dots at equal
time intervals) stops as it overlaps the major potential (magenta square
at (15,0)). The particle with the blu orbit stays bound in the resulting
structure, the red runs away from the system.

In cases 2 and 4 the particle can also get trapped by the big potential, as
it happens to the green orbits in figures 7.2 and 7.4. In all cases, the particle
can be kicked away (red orbits) or stays bound to the small potential or in
the resulting structure (blu orbits).

To check which one of the three possible final states characterises the
particles of each di↵erent run, we control the sign and constancy of their
total energies. We show for example in figure 7.5 the energy time evolution
for an ejected (in red) and bound (in blue) particles belonging to two case
2 simulations. We see that before the merger takes place (⇠ at t = 72)
both particles are bound, their total energies are constant and the kinetic
and potential one oscillating complementarily. At the merger time they
experience an abrupt fall in potential energy, then the blue particle energies
start again oscillating although di↵erently, meanwhile the red particle kinetic
energy steadily increases, the potential approaches zero and the total energy
gets greater then zero, i.e. the particle is out of the system.

To get enough statistics we run the code 4000 times, 1000 simulations
for each of the 4 cases. In table 7.1 we show the results.

For the N-body simulation with the same parameters we used in these
runs, the fraction of ejected particles is 11%, which lies between the values
of the head-on runs, cases 1 and 2, respectively 14% and 5.3%.

We notice that for non head-on simulations the ejection probability in-
creases by few percentage points.
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Figure 7.2: Case 2. (x,y) plane. The minor potential (black dots at equal
time intervals) is in free fall motion, the major potential stays still (magenta
square at (15,0)). The particle with the green orbit gets trapped by the
major potential, the red runs away from the system and the blu stays bound
in the minor potential after the merge.

Figure 7.3: Case 3. (x,y) plane. The minor potential (black dots at equal
time intervals) approaches the major potential (magenta square at (15,0))
with an impact parameter and stops as the two centres of mass overlap. The
particle with the blu orbit stays bound in the resulting structure, the red
runs away from the system.
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Figure 7.4: Case 4. (x,y) plane. The minor potential (black dots at equal
time intervals) is in free fall motion and approaches the major (magenta
square at (15,0)) with an impact parameter. The particle with the green
orbit gets trapped by the major potential, the red runs away from the system
and the blu stays bound in the minor potential after the merge.
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Figure 7.5: Case 2. Time evolution of the energy of a particle that stays
bound (blue) and of an ejected one (red). Top plot is the kinetic to respect
of the small halo, middle plot for the potential and in the bottom the sum
of the two above.
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Table 7.1: Ejection statistics. 1000 simulations run for each case. In cases
2 and 4 the small halo keeps moving and the particle can also get trapped
by the big halo, otherwise, as in the other two cases, it can get either ejected
or can stay in the small halo.

Ejected Small Big
halo halo

Case 1

Halo stops. 14% 86%
Head-on.

Case 2

Halo doesn’t stop. 5.3% 82.4% 12.3%
Head-on.

Case 3

Halo stops. 17% 83%
Impact parameter.

Case 4

Halo doesn’t stop. 7.2% 76.7% 16.1%
Impact parameter.
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Chapter 8

Conclusions

The first part of this work was dedicated to the study of black holes in scalar-
tensor theories of gravity with a surrounding mass distribution. We have
demonstrated that two di↵erent kinds of instabilities can arise, depending
on the sign of the e↵ective mass squared µ2

s that shows up coupling the
theory to matter.

When µ2

s is positive and the black hole is rotating superradiance is trig-
gered, when it is negative and there is su�cient matter the initial general
relativistic solution can develop scalar hairs, undergoing an e↵ect called
spontaneous scalarization. The e�ciency of the instability depends on the
matter profile, the hole’s rotational velocity and the considered scalar-tensor
theory. Moreover, superradiance is also responsible for the existence of long-
living modes propagating on the black hole background, that can be ampli-
fied with gain factors up to 105.

Our discussion has been especially qualitative. Having at our disposal
a more realistic framework, these e↵ects could lead to constraints on the

parameter space of scalar-tensor theories. This would involve a non
linear time evolution analysis of the instabilities, to understand the dynam-
ical development and the final states, and the improvement of the mass
profile we consider (e.g. modelling an accretion disk, which is not spheri-
cally symmetric). Regarding the last point on spherical symmetry: thinking
of the superradiant case, it could be argued that a more realistic geometry
of the problem could kill the instability (i.e. would be easier for the modes
to escape and not be reflected if we had a disk and not a sphere trapping
them), but it should also be taken into account that we expect matter to
be rotating at high velocity around the black hole: what would be the ef-
fect of rotation on the reflectivity of the mass distribution inner surface?
Addressing this question could be a possible spino↵ of this work.

Moving on to the observational imprints our results could have, we ex-
pect the nontrivial scalar profile developed by spontaneous scalarization to
a↵ect the inertia moment of binary systems and the production of grav-
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itational waves (e.g. what has already been studied within neutron stars,
see (Damour and Esposito-Farese, 1996; Barausse et al., 2012)).

Instead, superradiance slows down the black hole rotation. This could
be directly observed (e.g. recently X-ray spectroscopy has improved spin es-
timations, see (Reynolds, 2013)) or we could speculate that di↵erent black
holes at di↵erent redshift should follow a rotational velocity trend: the
younger (closer) ones spinning faster then the older (further).

Concluding, thanks to their simplicity, black holes are considered the
most viable way to study gravity in strong regime and also high energy
physics in some cases, with more convincing results coming up also from the
observational side, as recently reviewed in (Cardoso, 2013), so the techniques
used in this work could serve in other on-going topics.

In the second part of thesis, we have looked at the mechanism of particle
ejection that follows dark matter halo mergers.

We have shown that during mergers approximately 5� 15% of the par-
ticles from the minor halo are ejected. We have demonstrated that this
ejection is a mean field e↵ect, with the increase in the total energy of indi-
vidual particles arising from the time-dependence of the mean field potential
during the merger process. Our results also leads us to expect that particles
should not be ejected during smooth accretion.

Our finding provides an explanation for the origin of high-velocity

component of dark matter particles observed in cosmological N-body
simulations. This component of high-velocity particles is important since it
potentially may give a clear signature in underground dark matter detec-

tors (Behroozi et al., 2013). This is because particles ejected from other
merging structures may be passing through the Milky Way at energies sig-
nificantly higher than the equilibrated dark matter component of our galaxy.

Moreover, these results should be taken into account in determining
the distribution functions of merger remnants (dark matter halos or
galaxies).

Indeed, possible spino↵s from this work are the studies of what happens
to the resulting structure of merger after losing the ejected particles and of
what happens to ejected particles, what is the direction and distribution of
the ejection, and the possible e↵ects that these faster particles could give to
new reached structures, depositing their momenta into them.
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